

The following document contains information on Cypress products. Although the document is marked with the name "Spansion" and "Fujitsu", the company that originally developed the specification, Cypress will continue to offer these products to new and existing customers.

Continuity of Specifications

There is no change to this document as a result of offering the device as a Cypress product. Any changes that have been made are the result of normal document improvements and are noted in the document history page, where supported. Future revisions will occur when appropriate, and changes will be noted in a document history page.

Continuity of Ordering Part Numbers

Cypress continues to support existing part numbers. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Cypress products and solutions.

About Cypress

Cypress (NASDAQ: CY) delivers high-performance, high-quality solutions at the heart of today's most advanced embedded systems, from automotive, industrial and networking platforms to highly interactive consumer and mobile devices. With a broad, differentiated product portfolio that includes NOR flash memories, F-RAM[™] and SRAM, Traveo[™] microcontrollers, the industry's only PSoC[®] programmable system-on-chip solutions, analog and PMIC Power Management ICs, CapSense[®] capacitive touch-sensing controllers, and Wireless BLE Bluetooth[®] Low-Energy and USB connectivity solutions, Cypress is committed to providing its customers worldwide with consistent innovation, best-in-class support and exceptional system value.

16-bit Microcontroller

CMOS

F²MC-16LX MB90800 Series

MB90803/803S/F803/F803S/F804-101/ MB90F804-201/F809/F809S/V800

DESCRIPTION

The MB90800 series is a general-purpose 16-bit microcontroller that has been developed for high-speed realtime processing required for industrial and office automation equipment and process control, etc. The LCD controller of 48 segment four common is built into.

Instruction set has taken over the same AT architecture as in the F²MC-8L and F²MC-16L, and is further enhanced to support high level languages, extend addressing mode, enhanced divide/multiply instructions with sign and enrichment of bit processing. In addition, long word processing is now available by introducing a 32-bit accumulator.

Note: F²MC is the abbreviation of Fujitsu Flexible Microcontroller.

■ FEATURES

- Clock
 - Built-in PLL clock frequency multiplication circuit
 - Operating clock (PLL clock) : divided-by-2 of oscillation (at oscillation of 6.25 MHz) or
 - 1 to 4 times the oscillation (at oscillation of 6.25 MHz to 25 MHz).
 - Minimum instruction execution time of 40.0 ns (at oscillation of 6.25 MHz, four times the PLL clock, operation at Vcc = 3.3 V)
- The maximum memory space:16 Mbytes
 - 24-bit internal addressing
 - Bank addressing

(Continued)

For the information for microcontroller supports, see the following web site.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

Optimized instruction set for controller applications

- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- High code efficiency
- Enhanced high-precision computing with 32-bit accumulator
- Enhanced Multiply/Divide instructions with sign and the RETI instruction

• Instruction system compatible with high-level language (C language) and multitask

- Employing system stack pointer
- · Instruction set has symmetry and barrel shift instructions

• Program Patch Function (2 address pointer)

• 4-byte instruction queue

• Interrupt function

- The priority level can be set to programmable.
- Interrupt function with 32 factors

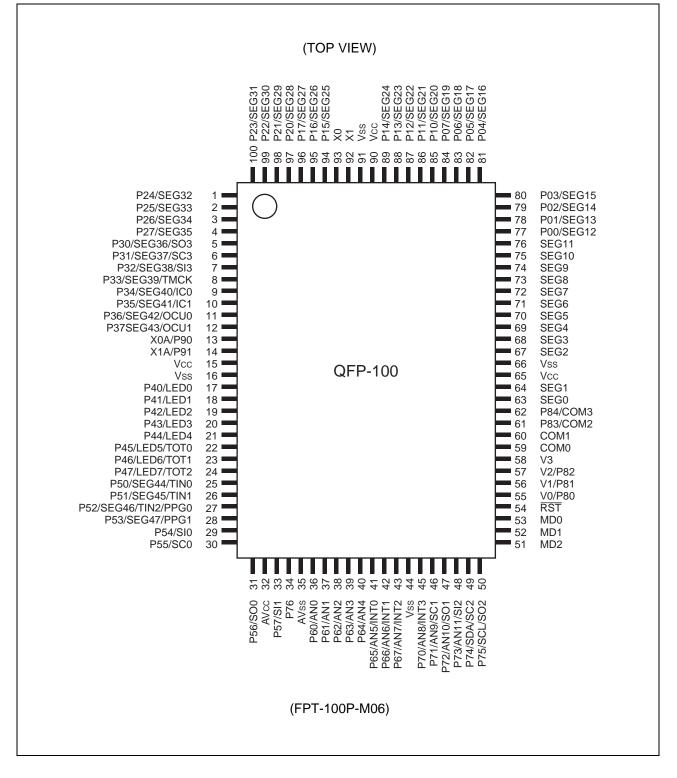
Data transfer function

• Expanded intelligent I/O service function (EI²OS): Maximum of 16 channels

• Low Power Consumption Mode

- Sleep mode (a mode that halts CPU operating clock)
- Time-base timer mode (a mode that operates oscillation clock and time-base timer)
- Watch mode (mode in which only the subclock and watch timers operate)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking mode (operating CPU at each set cycle)

• Package


- QFP-100 (FPT-100P-M06 : 0.65 mm lead pitch)
- Process : CMOS technology

■ PRODUCT LINEUP

P Item	art number	MB90V800- 101/201	MB90F804- 101/201	MB90803/ MB90803S	MB90F803/ MB90F803S	MB90F809/ MB90F809S			
Туре		Evaluation product	Flash memory products	Mask ROM prod- ucts	Flash memory products				
System of	clock	On-chip P	On-chip PLL clock multiplication method(\times 1, \times 2, \times 3, \times 4, 1/2 when PLL stops) Minimum instruction execution time of 40.0 ns (at oscillation of 6.25 MHz, four times the PLL clock)						
Sub cloc	k	With sub clock: Without sub cloc	201 option			ucts without "S" suffix ducts with "S" suffix			
ROM ca	pacity	No	256 Kbytes	128 Kbytes	128 Kbytes dual operation	192 Kbytes			
RAM cap	acity	28 Kbytes	16 Kbytes	4 Kbytes	4 Kbytes	10 Kbytes			
CPU functions		Number of basic instructions: 351Minimum instruction execution time: 40.0 ns/6.25 MHz oscillator (When four times is used : machine clock 25 MHz, Power supply voltage : 3.3 V ± 0.3 V)Addressing type: 23 typesProgram Patch Function: 2 address pointers : 16 Mbytes							
Ports		I/O port (CMOS) 68 ports (shared with resources), (70 ports when the subclock is not used)							
LCD controller/driver		Segment driver that can drive the LCD panel (liquid crystal display) directly, and common driver 48 SEG \times 4 COM							
	16-bit free-run timer	1 channel Overflow interrupt							
16-bit input/ output timer	Output compare (OCU)	2 channels Pin input factor:	matching of the co	ompare register					
umer	Input capture (ICU)	2 channels Rewriting a regis	ster value upon a j	oin input (rising edge	, falling edge, or bo	oth edges)			
16-bit Reload 1	imer	16-bit reload timer operation (toggle output, single shot output selectable) The event count function is optional. The event count function is optional. Three channels are built in.							
16-bit PPG timer		Output pin \times 2 ports Operating clock frequency : fcp, fcp/22, fcp/24, fcp/26 Two channels are built in.							
Time-ba	se timer			1 channel					
Watchdo	-			1 channel					
Timer clo output circuit	ock	Clock with a frec output externally		input clock divided b	by 16/32/64/128 ca	n be			
I ² C bus		I ² C Interface. 1 c	hannel is built-in.						

Part number Item	MB90V800- 101/201	MB90F804- 101/201	MB90803/ MB90803S	MB90F803/ MB90F803S	MB90F809/ MB90F809S				
8/10-bit A/D converter	The 8-bit resolu	12 channels (input multiplex) The 8-bit resolution or 10-bit resolution can be set. Conversion time : 5.9 μs (When machine clock 16.8 MHz works).							
UART	Asynchronous/s	Full-duplex double buffer Asynchronous/synchronous transmit (with start/stop bits) are supported. Fwo channels are built in.							
Extended I/O serial interface	Two channels are built in.								
Interrupt delay interrupt	One channel	One channel							
DTP/External interrupt					ble				
Low Power Consumption Mode	Sleep mode/Time-base timer mode/Watch mode/Stop mode/CPU intermittent mode								
Process	CMOS								
Operating voltage			2.7 V to 3.6	V					

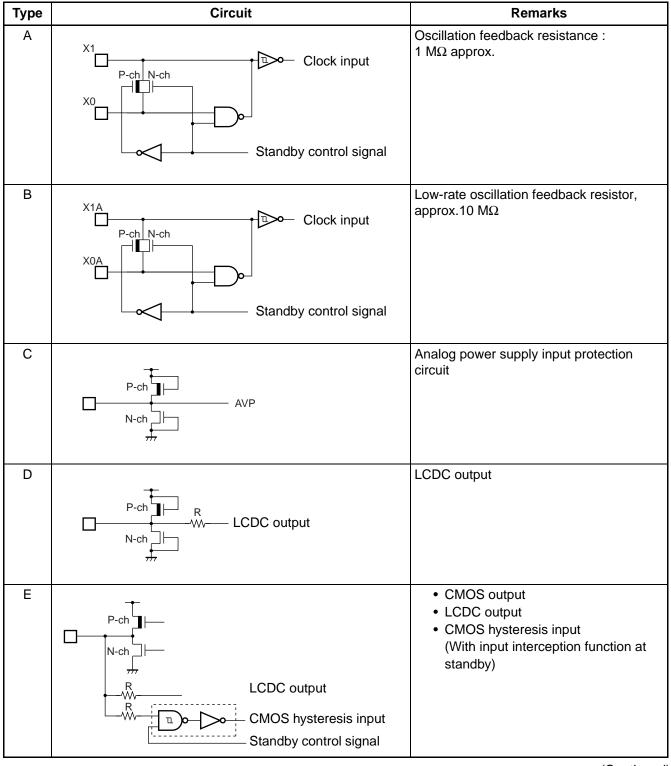
■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
92, 93	X1, X0	А	Oscillation status	It is a terminal which connects the oscillator. When connecting an external clock, leave the x1 pin unconnected.
13, 14	X0A, X1A	В	Oscillation status	It is 32 kHz oscillation pin. (Dual-line model)
13, 14	P90, P91	G	Port input (High-Z)	General purpose input/output port. (Single-line model)
51	MD2	М	Mode Pins	Input pin for selecting operation mode. Connect directly to Vss.
52, 53	MD1, MD0	L	Mode Pins	Input pin for selecting operation mode. Connect directly to Vcc.
54	RST	К	Reset input	External reset input pin.
63, 64, 67 to 76	SEG0 to SEG11	D	LCD SEG output	A segment output terminal of the LCD controller/ driver.
77 to 84	SEG12 to SEG19	E		A segment output terminal of the LCD controller/ driver.
	P00 to P07			General purpose input/output port.
85 to 89, 94 to 96	SEG20 to SEG27	E		A segment output terminal of the LCD controller/ driver.
	P10 to P17			General purpose input/output port.
97 to 100, 1 to 4	SEG28 to SEG35	E		A segment output terminal of the LCD controller/ driver.
	P20 to P27		Port input	General purpose input/output port.
	SEG36		(High-Z)	A segment output terminal of the LCD controller/ driver.
5	P30	Е		General purpose input/output port.
Ť	SO3	_		Serial data output pin of serial I/O ch.3. Valid when serial data output of serial I/O ch.3 is enabled.
	SEG37			A segment output terminal of the LCD controller/ driver.
6	P31	Е		General purpose input/output port.
	SC3	_		Serial clock I/O pin of serial I/O ch.3. Valid when serial clock output of serial I/O ch.3 is enabled.

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	SEG38			A segment output terminal of the LCD controller/ driver.
7	P32	Е		General purpose input/output port.
	SI3	_		Serial data input pin of serial I/O ch.3. This pin may be used during serial I/O ch.3 in input mode, so it cannot use as other pin function.
	SEG39			A segment output terminal of the LCD controller/ driver.
8	P33	Е		General purpose input/output port.
	TMCK			Timer clock output pin. It is effective when permitting the power output.
0.40	SEG40, SEG41	41		A segment output terminal of the LCD controller/ driver.
9, 10	P34, P35	E		General purpose input/output port.
	IC0, IC1			External trigger input pin of input capture ch.0/ch.1.
	SEG42, SEG43			A segment output terminal of the LCD controller/ driver.
11, 12	P36, P37	E	Dort input	General purpose input/output port.
	OCU0, OCU1		Port input (High-Z)	Output terminal for the output compares ch.0/ch.1.
17 to 21	LED0 to LED4	F		It is a output terminal for LED ($I_{OL} = 15 \text{ mA}$).
	P40 to P44			General purpose input/output port.
	LED5 to LED7			It is a output terminal for LED ($I_{OL} = 15 \text{ mA}$).
22 to 24	P45 to P47	F		General purpose input/output port.
	TOT0 to TOT2			External event output pin of reload timer ch.0 to ch.2. It is effective when permitting the external event output.
	SEG44, SEG45			A segment output terminal of the LCD controller/ driver.
25, 26	P50, P51	Е		General purpose input/output port.
	TINO, TIN1			External clock input pin of reload timer ch.0, ch.1. It is effective when permitting the external clock input.

Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	SEG46			A segment output terminal of the LCD controller/ driver.
	P52			General purpose input/output port.
27	TIN2	E		External clock input pin of reload timer ch.2. It is effective when permitting the external clock input.
	PPG0			PPG timer (ch.0) output pin.
	SEG47	_		A segment output terminal of the LCD controller/ driver.
28	P53	E		General purpose input/output port.
	PPG1			PPG (ch.1) timer output pin.
29	SIO	G		Serial data input pin of UART ch.0. This pin may be used during UART ch.0 in receiving mode, so it cannot use as other pin function.
	P54			General purpose input/output port.
30	SC0	G	Port input (High-Z)	Serial clock input/output pin of UART ch.0. It is effective when permitting the serial clock output of UART ch.0.
	P55			General purpose input/output port.
31	SO0	G		Serial data output pin of UART ch.0. It is effective when permitting the serial clock output of UART ch.0.
	P56			General purpose input/output port.
33	SI1	G		Serial data input pin of UART ch.1. This pin may be used during UART ch.1 in receiving mode, so it cannot use as other pin function.
	P57			General purpose input/output port.
34	P76	G]	General purpose input/output port.
36 to 40	AN0 to AN4	I		Analog input pin ch.0 to ch.4 of A/D converter. Enabled when analog input setting is "enabled" (set by ADER).
	P60 to P64			General purpose input/output port.


Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	AN5 to AN7			Analog input pin ch.5 to ch.7 of A/D converter. Enabled when analog input setting is "enabled".
41 to 43	P65 to P67	I		General purpose input/output port.
	INT0 to INT2		Analog input (High-Z)	Functions as an external interrupt ch.0 to ch.2 input pin.
	AN8			Analog input pin ch.8 of A/D converter. Enabled when analog input setting is "enabled".
45	P70			General purpose input/output port.
	INT3			Functions as an external interrupt ch.3 input pin.
	AN9			Analog input pin ch.9 of A/D converter. Enabled when analog input setting is "enabled".
46	P71			General purpose input/output port.
	SC1			Serial clock input/output pin of UART ch.1. It is effective when permitting the serial clock output of UART ch.1.
	AN10			Analog input pin ch.10 of A/D converter. Enabled when analog input setting is "enabled".
47	P72	1	Port input	General purpose input/output port.
	SO1		(High-Z)	Serial data output pin of serial I/O ch.1. Valid when serial data output of serial I/O ch.1 is enabled.
	AN11			Analog input pin ch.11 of A/D converter. Enabled when analog input setting is "enabled".
48	P73			General purpose input/output port.
	SI2			Serial data input pin of serial I/O ch.2. This pin may be used during serial I/O ch.2 in input mode, so it cannot use as other pin function.

(Continued)

(Continued) Pin No.	Pin Name	I/O Circuit Type*	Status/function at reset	Function
	SDA			Data input/output pin of I ² C Interface. This pin is enabled when the I ² C interface is operated. While the I ² C interface is running, the port must be set for input use.
49	P74	Н		General purpose input/output port. (N-ch open-drain, withstand voltage of 5 V.)
	SC2		Port input	Serial clock input pin of serial I/O ch.2. Valid when serial clock output of serial I/O ch.2 is enabled.
	SCL		(High-Z)	Clock input/output pin of I ² C Interface. This pin is enabled when the I ² C interface is operated. While the I ² C interface is running, the port must be set for input use.
50	P75	н		General purpose input/output port. (N-ch open-drain, withstand voltage of 5 V.)
	SO2			Serial data output pin of serial I/O ch.2. Valid when serial data output of serial I/O ch.2 is enabled.
55 to 57	V0 to V2	J	LCD drive power	LCD controller/driver. Reference power terminals of LCD controller/driver.
	P80 to P82		supply input	General purpose input/output port.
59, 60	COM0, COM1	D	LCD COM output	A common output terminal of the LCD controller/ driver.
	P83, P84		Dortinout	General purpose input/output port.
61, 62	COM2, COM3	E	Port input (High-Z)	A common output terminal of the LCD controller/ driver.
32	AVcc	С		A/D converter exclusive power supply input pin.
35	AVss	С	1	A/D converter-exclusive GND power supply pin.
58	V3	J	Power supply	LCD controller/driver Reference power terminals of LCD controller/driver.
15, 65, 90	Vcc			These are power supply input pins.
16, 44, 66, 91	Vss			GND power supply pin.

* : Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
F	P-ch N-ch R CMOS hysteresis input Standby control signal	 CMOS output (Heavy-current lo∟ =15 mA for LED drive) CMOS hysteresis input (With input interception function at standby)
G	P-ch N-ch R CMOS hysteresis input Standby control signal	 CMOS output CMOS hysteresis input (With input interception function at standby) Notes : • The I/O port and internal resources share one output buffer for their outputs. • The I/O port and internal resources share one input buffer for their input.
Н	N-ch Nout N-ch Nout R CMOS hysteresis input Standby control signal	 CMOS hysteresis input (With input interception function at standby) N-ch open drain output
I	P-ch R CMOS hysteresis input Standby control signal A/D converter Analog input	 CMOS output CMOS hysteresis input (With input interception function at standby) Analog input (If the bit of analog input enable register = 1, the analog input of A/D converter is enabled.) Notes : • The I/O port and internal resources share one output buffer for their outputs. The I/O port and internal resources share one input buffer for their inputs.

(Continι Type	Circuit	Remarks
J	P-ch N-ch R CMOS hysteresis input Standby control signal LCD drive power supply	 CMOS output CMOS hysteresis input (With input interception function at standby) LCD drive power supply input
к	R R R R R R R R R R R R R R R R R R R	CMOS hysteresis input with pull-up resistor.
L	CMOS hysteresis input	CMOS hysteresis input
М	CMOS hysteresis input	CMOS hysteresis input with pull-down resistor

HANDLING DEVICES

1. Preventing Latch-up, Turning on Power Supply

Latch-up may occur on CMOS IC under the following conditions:

- If a voltage higher than Vcc or lower than Vss is applied to input and output pins,
- A voltage higher than the rated voltage is applied between Vcc pin and Vss pin.
- If the AVcc power supply is turned on before the Vcc voltage.

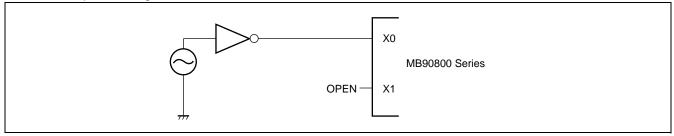
Ensure that you apply a voltage to the analog power supply at the same time as V_{cc} or after you turn on the digital power supply (when you perform power-off, turn off the analog power supply first or at the same time as V_{cc} and the digital power supply).

When latch-up occurs, power supply current increases rapidly and might thermally damage elements. When using CMOS IC, take great care to prevent the occurrence of latch-up.

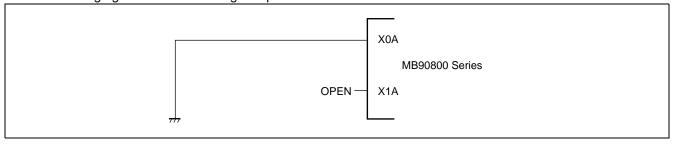
2. Treatment of unused pins

If unused input pins are left open, they may cause abnormal operation or latch-up which may lead to permanent damage to the semiconductor. Any such pins should be pulled up or pulled down through resistance of at least $2 \text{ k}\Omega$.

Any unused input/output pins should be left open in output status, or if found set to input status, they should be treated in the same way as input pins.


Any unused output pins should be left open.

3. Treatment of A/D converter power supply pins


Even if the A/D converter is not used, pins should be connected so that AVcc = Vcc, and AVss = Vss.

4. About the attention when the external clock is used

In using an external clock, drive pin X0 only and leave pin X1 open. The example of using an external clock is shown below.

Please set XOA = GND and X1A = open without subclock mode. The following figure shows the using sample.

5. Treatment of power supply pins (Vcc/Vss)

In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect all power supply pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μF as a bypass capacitor between V_{CC} and V_{SS} near this device.

6. About Crystal oscillators circuit

Noise near the X0/X1 pins and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1 pins and X0A/X1A pins, the crystal oscillator (or the ceramic oscillator) and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended to design the PC board artwork with the X0/X1 pins and X0A/X1A pins surrounded by ground plane because stable operation can be expected with such a layout.

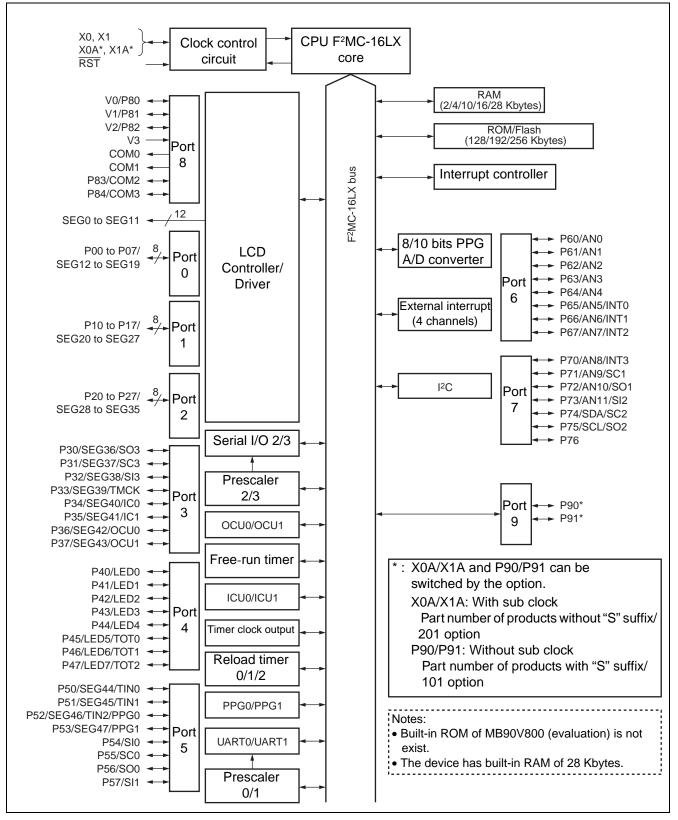
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

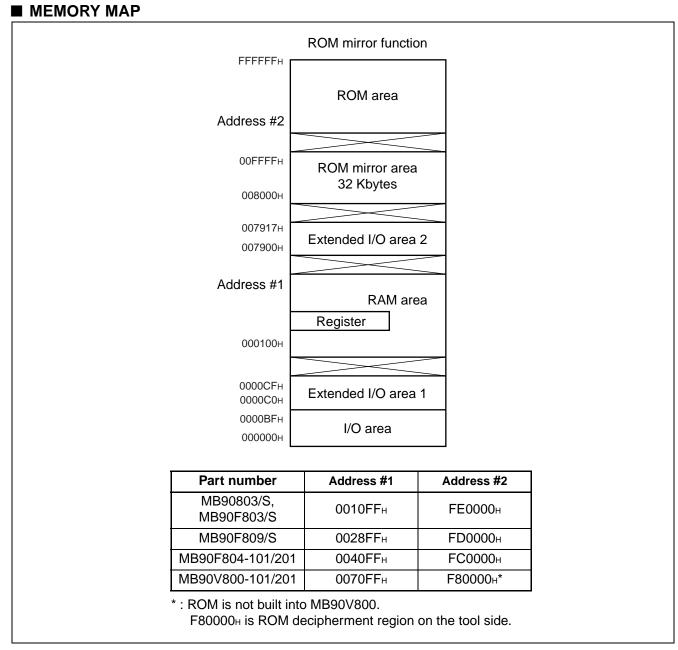
7. Caution on Operations during PLL Clock Mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

8. Stabilization of Supply Power Supply

A sudden change in the supply voltage may cause the device to malfunction even within the Vcc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized. For reference, the supply voltage should be controlled so that Vcc ripple variations (peak- to-peak values) at commercial frequencies (50 Hz/60 Hz) fall below 10% of the standard Vcc supply voltage and the coefficient of fluctuation does not exceed 0.1 V/ms at instantaneous power switching.


9. Note on Using the two-subsystem product as one-subsystem product

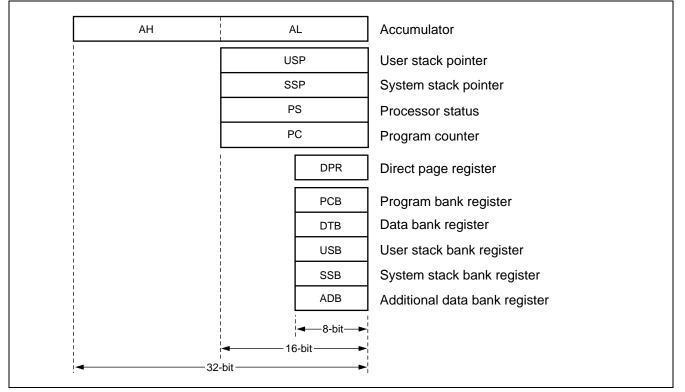

If you are using only one subsystem of the MB90800 series that come in one two-subsystem product, use it with XOA = Vss and X1A = OPEN.

10. Write to FLASH

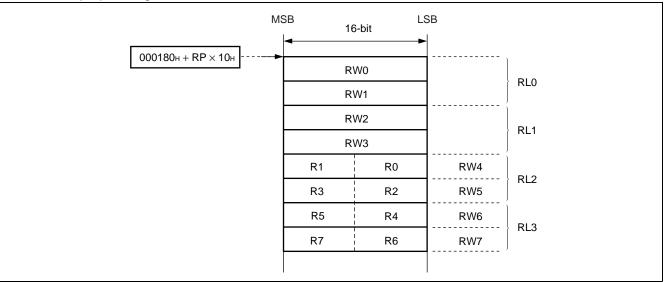
Ensure that you must write to FLASH at the operating voltage $V_{CC} = 3.0$ V to 3.6 V.

BLOCK DIAGRAM

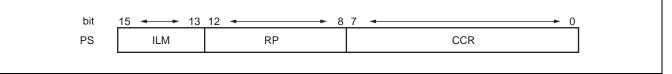
Memory Map of MB90800 Series


- Notes : When the ROM mirror function register has been set, the mirror image data at higher addresses ("FF4000н to FFFFFFн") of bank FF is visible from the higher addresses ("008000н to 00FFFFн") of bank 00.
 - The ROM mirror function is for using the C compiler small model.
 - The lower 16-bit addresses of bank FF are equivalent to those of bank 00. Note that because the ROM area of bank FF exceeds.

32 Kbytes, all data in the ROM area cannot be shown in mirror image in bank 00.


• When the C compiler small model is used, the data table can be shown as mirror image at "008000_H to 00FFFF_H "by storing the data table at "FF8000_H to FFFFF_H". Therefore, data tables in the ROM area can be referenced without declaring the far addressing with the pointer.

■ F²MC-16L CPU Programming model


• Dedicated Registers

• General purpose registers

Processor status

FUITSU

■ I/O MAP

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
00000н	PDR0	Port 0 data register	R/W	Port 0	XXXXXXXXB
000001н	PDR1	Port 1 data register	R/W	Port 1	XXXXXXXXB
000002н	PDR2	Port 2 data register	R/W	Port 2	XXXXXXXXB
00003н	PDR3	Port 3 data register	R/W	Port 3	XXXXXXXXB
000004н	PDR4	Port 4 data register	R/W	Port 4	XXXXXXXXB
000005н	PDR5	Port 5 data register	R/W	Port 5	XXXXXXXXB
00006н	PDR6	Port 6 data register	R/W	Port 6	XXXXXXXXB
000007н	PDR7	Port 7 data register	R/W	Port 7	- XXXXXXXв
00008н	PDR8	Port 8 data register	R/W	Port 8	XXXXX _B
000009н	PDR9	Port 9 data register	R/W	Port 9	ХХв
00000Ан to 00000Fн		Prohi	bited		
000010н	DDR0	Port 0 direction register	R/W	Port 0	000000000
000011н	DDR1	Port 1 direction register	R/W	Port 1	00000000
000012н	DDR2	Port 2 direction register	R/W	Port 2	00000000
000013н	DDR3	Port 3 direction register	R/W	Port 3	00000000
000014н	DDR4	Port 4 direction register	R/W	Port 4	00000000
000015н	DDR5	Port 5 direction register	R/W	Port 5	00000000
000016н	DDR6	Port 6 direction register	R/W	Port 6	00000000
000017н	DDR7	Port 7 direction register	R/W	Port 7	-0000000
000018н	DDR8	Port 8 direction register	R/W	Port 8	00000
000019н	DDR9	Port 9 direction register	R/W	Port 9	0 Ов
00001Ан to 00001Dн		Prohi	bited		
00001Eн	ADER0	Analog input enable 0 register	R/W	Port 6, A/D	11111111 в
00001Fн	ADER1	Analog input enable 1 register	R/W	Port 7, A/D	1111в
000020н	SMR0	Serial mode register	R/W		0000-00в
000021н	SCR0	Serial control register	R/W		00000100в
000022н	SIDR0/ SODR0	Serial input/output register	R/W	UART0	XXXXXXXXB
000023н	SSR0	Serial data register	R/W		00001000в
000024н		Prohi	bited		
000025н	CDCR0	Communication prescaler control R		Prescaler 0	000000в
000026н		Drok:	hitod	1	1
000027н		Prohi	ulled		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
000028н	SMR1	Serial mode register	R/W		00000-00в
000029н	SCR1	Serial control register	R/W, W	-	00000100в
00002Ан	SIDR1/ SODR1	Serial input/output register	R/W	UART1	XXXXXXXXB
00002Вн	SSR1	Serial data register		00001000в	
00002Сн		Prohibit	ed		
00002Dн	CDCR1	Communication prescaler control register	Prescaler 1	000000	
00002Ен		Prohibit	ed		
00002Fн		Tionish	eu		
000030н	ENIR	Interrupt/DTP enable	R/W		0000
000031н	EIRR	Interrupt/DTP source	R/W	External interrupt	XXXX _В
000032н	ELVR	Request level set register	R/W	-	00000000 _B
000033н		Prohibit	ed		
000034н	ADCS0	Control status register (lower)	R/W		00в
000035н	ADCS1	Control status register (upper)	W, R/W	A/D converter	00000000
000036н	ADCR0	Data register (lower)	R	A/D converter	XXXXXXXXB
000037н	ADCR1	Data register (upper)	R, W	-	00101-ХХв
000038н		Prohibit	ed	1	
000039н	ADMR	A/D conversion channel set register	R/W	A/D converter	00000000
00003Ан					XXXXXXXXB
00003Вн	CPCLR	Compare clear register	R/W		XXXXXXXXB
00003Сн	TODT	T'un anna a tha lata an c'atan	DAA		00000000
00003DH	TCDT	Timer counter data register	R/W	16-bit free-run	00000000
00003Ен	TCCSL	Timer counter control/status register (lower)	R/W	timer	000000000
00003Fн	TCCSH	Timer counter control/status register (upper)	R/W		0 0 0 0 0 0в
000040н					
to		Prohibit	ed		
000043н		[
000044н 000045н	IPCP0	Input capture data register 0			XXXXXXXXB
000045н			R	Input Conture 0/4	XXXXXXXXB XXXXXXXXB
000046н	IPCP1	Input capture data register 1		Input Capture 0/1	
000047н	10001			4	XXXXXXXXB
000048н 000048	ICS01	Control status register	R/W		00000000
000049н 000044		Prohibit	ea		00000000
00004Ан	OCCP0	Compare register 0	R/W	Output compare 0	0 0 0 0 0 0 0 0 _B
00004Bн		-			0000000 _B
00004Cн	OCCP1	Compare register 1	R/W	Output compare 1	00000000B
00004Dн				· · ·	000000000 _В (Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value		
00004Eн	OCSL	Control status register (lower)	R/W	Output Compare	000000в		
00004F н	OCSH	Control status register (upper)	R/W	0/1	00000		
000050н	TMCSR0L	Timer control status register (lower)	R/W		00000000		
000051н	TMCSR0H	Timer control status register (upper)	R/W	16-bit reload	0000в		
000052н	TMR0/	16-bit timer register/Reload register	R/W	timer 0	XXXXXXXXB		
000053н	TMRLR0				XXXXXXXXB		
000054н	TMCSR1L	Timer control status register (lower)	R/W		00000000		
000055н	TMCSR1H	Timer control status register (upper)	R/W	16-bit reload	0000в		
000056н	TMR1/	16 bit timer register/Poload register	R/W	timer 1	XXXXXXXXB		
000057 н	TMRLR1	16-bit timer register/Reload register	r/ v v		XXXXXXXXB		
000058н	TMCSR2L	Timer control status register (lower)	R/W		00000000		
000059н	TMCSR2H	Timer control status register (upper)	R/W	16-bit reload	0000в		
00005Ан	TMR2/	16-bit timer register/Reload register	R/W	timer 2	XXXXXXXXB		
00005Вн	TMRLR2				XXXXXXXXB		
00005Сн	LCRL	LCDC control register (lower)	R/W		0001000в		
00005Dн	LCRH	LCDC control register (upper)	R/W	LCD controller/ driver	00000000		
00005Ен	LCRR	LCDC range register	R/W	diver	00000000		
00005Fн		Prohibit	ed				
000060н	SMCS0	Serial mode control status register	R, R/W	SIO	0000010в		
000061н	310030	Senai mode control status register	R/W	(Extended Serial	0000в		
000062н	SDR0	Serial Data Register	R/W	I/O)	XXXXXXXXB		
000063н	SDCR0	Communication prescaler control register	R/W	Communication prescaler (SIO)	0 0 0 0 0в		
000064н	SMCS1	Serial mode control status register	R, R/W	SIO	0000010в		
000065н	300001	Senai mode control status register	R/W	(Extended Serial	0000в		
000066н	SDR1	Serial Data Register	R/W	I/O)	XXXXXXXXB		
000067н	SDCR1	Communication prescaler control register	R/W	Communication prescaler (SIO)	0 0 0 0 0в		
000068н		Drobibit	od				
000069н	Prohibited						
00006Ан	IBSR	I ² C status register	R		00000000		
00006Вн	IBCR	I ² C control register	R/W		00000000		
00006Сн	ICCR	I ² C clock control register	R/W	I ² C	XX0XXXXX _B		
00006Dн	IADR	I ² C address register	R/W		XXXXXXXXB		
00006Eн	IDAR	I ² C data register	R/W		XXXXXXXXB		
00006F н	ROMM	ROM mirror function select register	R/W, W	ROM mirror	XXXXXXX1B		

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value				
000070н	PDCRL0	PDCRL0/PDCRH0 PPG down counter	R		1 1 1 1 1 1 1 1 _B				
000071н	PDCRH0	register	ĸ		11111111 в				
000072н	PCSRL0	PCSRL0/PCSRH0 PPG cycle set	W		XXXXXXXXB				
000073н	PCSRH0	register	vv	16-bit	XXXXXXXXB				
000074н	PDUTL0	PDUTL0/PDUTH0 PPG duty setting	W	PPG0	XXXXXXXXAB				
000075н	PDUTH0	register	vv		XXXXXXXXB				
000076н	PCNTL0	PCNTL0/PCNTH0 PPG control status	R/W		000000в				
000077н	PCNTH0	register	r./ v v		000000-в				
000078н	PDCRL1	PDCRL1/PDCRH1 PPG down counter	P		11111111 _В				
000079н	PDCRH1	register	R		11111111				
00007Ан	PCSRL1	PCSRL1/PCSRH1 PPG cycle set	14/		XXXXXXXXB				
00007Вн	PCSRH1	register	W	16-bit	XXXXXXXXB				
00007Сн	PDUTL1	PDUTL1/PDUTH1 PPG duty setting	14/	PPG1	XXXXXXXXB				
00007Dн	PDUTH1	register	W		XXXXXXXXB				
00007E н	PCNTL1	PCNTL1/PCNTH1 PPG control status	D AA/		000000в				
00007F н	PCNTH1	register	R/W		000000-в				
000080н		I			<u> </u>				
to		(Reserve	d)						
000095н									
000096н		Prohibite							
000097н		(Reserve	d)						
000098⊦ to		Prohibite	.d						
10 00009Dн		FIONDILE	u						
00009Ен	PACSR	ROM correction control register	R/W	ROM Correction	00000000				
00009Fн	DIRR	Delayed interrupt source generated/ release register	R/W	Delayed interrupt	Ов				
0000А0н	LPMCR	Low power consumption mode control register	R/W, W	Low power consumption	00011000в				
0000A1 н	CKSCR	Clock selector register	R/W, R	control circuit	1111100в				
0000А2н									
to		Prohibite	ed						
0000А7н									
0000А8н	WDTC	Watchdog timer control register	R, W	Watchdog timer	XXXXX 1 1 1 _B				
0000А9н	TBTC	Time-base timer control register	R/W, W	Time-base timer	1 0 0 1 0 Ов				
0000ААн	WTC	Watch timer control registerR/W, RWatch timer (Sub clock)1 X0 1 1							
0000ABн to 0000ADн		Prohibite	ed						

(Continued)

Address	Register abbreviation	Register	Read/ Write	Resource name	Initial Value
0000АЕн	FMCS	Flash control register	R/W	Flash I/F	000Х000в
0000AFн	TMCS	Timer clock output control register	R/W	Timer clock divide	XXXXX 0 0 0 _B
0000В0н	ICR00	Interrupt control register 00	R/W, W, R		00000111в
0000B1н	ICR01	Interrupt control register 01	R/W, W, R		00000111в
0000B2H	ICR02	Interrupt control register 02	R/W, W, R		00000111в
0000ВЗн	ICR03	Interrupt control register 03	R/W, W, R		00000111в
0000В4н	ICR04	Interrupt control register 04	R/W, W, R		00000111в
0000В5н	ICR05	Interrupt control register 05	R/W, W, R		00000111в
0000В6н	ICR06	Interrupt control register 06	R/W, W, R		00000111в
0000B7н	ICR07	Interrupt control register 07	R/W, W, R	Interrupt	00000111в
0000В8н	ICR08	Interrupt control register 08	R/W, W, R	controller	00000111в
0000В9н	ICR09	Interrupt control register 09	R/W, W, R		00000111в
0000ВАн	ICR10	Interrupt control register 10	R/W, W, R		00000111в
0000BBн	ICR11	Interrupt control register 11	R/W, W, R		00000111в
0000BCн	ICR12	Interrupt control register 12	R/W, W, R		00000111в
0000BDH	ICR13	Interrupt control register 13	R/W, W, R		00000111в
0000BEH	ICR14	Interrupt control register 14	R/W, W, R		00000111в
0000BFн	ICR15	Interrupt control register 15	R/W, W, R		00000111в
0000САн	FWR0	Flash Program Control Register 0	R/W	Flash I/F	00000000
0000СВн	FWR1	Flash Program Control Register 1	R/W	(MB90F803/S	00000000
0000ССн	SSR0	Sector Conversion Setting Register	R/W	only object)	0 0 ХХХХХ 0в
001FF0н					XXXXXXXXB
001FF1н	PADR0	Program address detection register 0	R/W	Address	XXXXXXXXB
001FF2н				matching	XXXXXXXXB
001FF3н				detection	XXXXXXXXB
001FF4н	PADR1	Program address detection register 1	R/W	function	XXXXXXXXB
001FF5н	1				XXXXXXXXB
007900н to 007917н	VRAM	LCD display RAM	R/W	LCD controller/ driver	XXXXXXXXB

• Read/Write

R/W : Readable and Writable

- R : Read only
- W : Write only

Initial values

- 0 : Initial Value is "0".
- 1 : Initial Value is "1".
- X : Initial Value is Indeterminate.
- : Unused bit

■ INTERRUPT SOURCES, INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

	El ² OS	Int	errupt	vector	Interrupt o	Pri	
Interrupt source	readiness	Num	nber*	Address	ICR	Address	Pri
Reset	×	#08	08н	FFFFDC _H			Hi
INT 9 instruction	×	#09	09н	FFFFD8H			
Exceptional treatment	×	#10	0Ан	FFFFD4 _H			
DTP/External interrupt ch.0	0	#11	0Вн	FFFFD0H	ICR00	0000В0н	
DTP/External interrupt ch.1	0	#13	0Dн	FFFFC8H	ICR01	0000B1н	
Serial I/O ch.2	×	#15	0Fн	FFFFC0H		000000	
DTP/External interrupt ch.2/ch.3	0	#16	10 н	FFFFBC H	ICR02	0000B2н	
Serial I/O ch.3	×	#17	11 н	FFFFB8H	ICR03	0000B3н	
16-bit free-run timer	0	#18	12н	FFFFB4н	ICRUS	UUUUDJH	
Watch timer	×	#19	13н	FFFFB0H	ICR04	0000B4н	
16-bit Reload Timer ch.2	0	#21	15 н	FFFFA8H	ICR05	0000B5н	
16-bit Reload Timer ch.0	\triangle	#23	17 н	FFFFA0H	ICR06	0000 В 6н	
16-bit Reload Timer ch.1	\triangle	#24	18 н	FFFF9CH	ICRUO	UUUUBOH	
Input capture ch.0	\bigtriangleup	#25	19 н	FFFF98H	ICR07	0000 B7 н	
Input capture ch.1	\triangle	#26	1Ан	FFFF94H		0000071	
PPG timer ch.0 counter-borrow	0	#27	1Bн	FFFF90H	ICR08	0000В8н	
Output compare match	0	#29	1Dн	FFFF88H	ICR09	0000В9н	
PPG timer ch.1 counter-borrow	0	#31	1Fн	FFFF80H	ICR10	0000ВАн	
Time-base timer	×	#33	21н	FFFF78н	ICR11	0000ВВн	
UART0 reception end	Ø	#35	23н	FFFF70H	ICR12	0000BCн	1
UART0 transmission end	\bigtriangleup	#36	24н	FFFF6CH		UUUDCH	
A/D converter conversion termination	0	#37	25н	FFFF68H	ICR13	0000BDн	
I ² C Interface	×	#38	26н	FFFF64H	ICKIS	UUUUDDH	
UART1 : Reception	Ø	#39	27н	FFFF60H	ICR14	0000BEн	
UART1 : Transmission	\bigtriangleup	#40	28н	FFFF5CH	101(14	UUUUDEH	
Flash memory status	×	#41	29н	FFFF58H	ICR15	0000BFн	
Delayed interrupt output module	×	#42	2Ан	FFFF54н	IUR ID	UUUUDFH	Lo

 \bigcirc : Available

 \times : Unavailable

 $\odot~$: Available El²OS function is provided.

 \triangle : Available when a cause of interrupt sharing a same ICR is not used.

- *: When interrupts of the same level are output at the same time, the interrupt with the smallest interrupt vector number has the priority.
 - For a resource that has two interrupt causes in the same interrupt control register (ICR), use of EI²OS is enabled, EI²OS is started upon detection of one of the interrupt causes. As interrupts other than the start cause are masked during EI²OS start, masking one of the interrupt causes is recommended when using EI²OS.
 - For a resource that has two interrupt causes in the same interrupt control register (ICR), the interrupt flag is cleared by an EI²OS interrupt clear signal.

PERIPHERAL RESOURCES

1. I/O port

The I/O ports function to output data from the CPU to I/O pins by setting their port data register (PDR) and send signals input to I/O pins to the CPU. In addition, the port can randomly set the direction of the input/output of the port in bit by the port direction register (DDR).

The MB90800 series has 68 (70 ports when the subclock is not used) input/output pins. Port0 to port8 (port0 to port9 when product without the subclock is used) are input/output port.

PDR0 bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 000000н	P07	P06	P05	P04	P03	P02	P01	P00	Indeterminate	R/W*
PDR1 bit	15	14	13	12	11	10	9	8		
Address : 000001н	P17	P16	P15	P14	P13	P12	P11	P10	Indeterminate	R/W*
PDR2 bit	7	6	5	4	3	2	1	0		
Address : 000002H	P27	P26	P25	P24	P23	P22	P21	P20	Indeterminate	R/W*
PDR3 bit	15	14	13	12	11	10	9	8		
Address : 000003н	P37	P36	P35	P34	P33	P32	P31	P30	Indeterminate	R/W*
PDR4 bit	7	6	5	4	3	2	1	0		
Address : 000004H	P47	P46	P45	P44	P43	P42	P41	P40	Indeterminate	R/W*
PDR5 bit	15	14	13	12	11	10	9	8		
Address : 000005н	P57	P56	P55	P54	P53	P52	P51	P50	Indeterminate	R/W*
PDR6 bit	7	6	5	4	3	2	1	0		
Address : 000006н	P67	P66	P65	P64	P63	P62	P61	P60	Indeterminate	R/W*
PDR7 bit	15	14	13	12	11	10	9	8		
Address : 000007н	_	P76	P75	P74	P73	P72	P71	P70	Indeterminate	R/W*
PDR8 bit	7	6	5	4	3	2	1	0		
Address : 000008H	_		_	P84	P83	P82	P81	P80	Indeterminate	R/W*
PDR9 bit	15	14	13	12	11	10	9	8		
Address : 000009н	_					_	P91	P90	Indeterminate	R/W*
- : Unused										

(1) Port data register

* : R/W access to I/O ports is a bit different in behavior from R/W access to memory as follows

• Input mode

When reading : Read the corresponding pin level.

When writing : Write into the latch for the output.

Output mode

When reading : Read the value of the data register latch.

When writing : Write into the corresponding pin.

(2) Port direction register

DDR0 bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 000010н	D07	D06	D05	D04	D03	D02	D01	D00	0000000в	R/W
DDR1 bit	15	14	13	12	11	10	9	8		
Address : 000011 _H	D17	D16	D15	D14	D13	D12	D11	D10	0000000в	R/W
DDR2 bit	7	6	5	4	3	2	1	0		
Address : 000012H	D27	D26	D25	D24	D23	D22	D21	D20	0000000в	R/W
DDR3 bit	15	14	13	12	11	10	9	8		
Address : 000013н	D37	D36	D35	D34	D33	D32	D31	D30	0000000в	R/W
DDR4 bit	7	6	5	4	3	2	1	0		
Address : 000014 _H	D47	D46	D45	D44	D43	D42	D41	D40	0000000в	R/W
DDR5 bit	15	14	13	12	11	10	9	8		
Address : 000015н	D57	D56	D55	D54	D53	D52	D51	D50	0000000в	R/W
DDR6 bit	7	6	5	4	3	2	1	0		
Address : 000016н	D67	D66	D65	D64	D63	D62	D61	D60	0000000в	R/W
DDR7 bit	15	14	13	12	11	10	9	8		
Address : 000017H	_	D76	D75	D74	D73	D72	D71	D70	- 000000в	R/W
DDR8 bit	7	6	5	4	3	2	1	0		
Address : 000018н	_	_	_	D84	D83	D82	D81	D80	00000в	R/W
DDR9 bit	15	14	13	12	11	10	9	8		
Address : 000019н							D91	D90	00в	R/W
- : Unused										

When each terminal functions as a port, each correspondent pin are controlled by the port direction register to following;

0 : Input mode

1 : Output mode This bit becomes "0" after a reset.

Note : When accessing this register by using the instruction of the read modify write system (instructions such as bit set) is mode, the bit targeted by an instruction becomes the defined value. However, the content of the output register set to input with the other changes to input value of the pin at that time. Therefore, be sure to write an expected value into PDR firstly, and then set DDR and finally change to the output when changing the input pin to the output pin is made.

(3) Analog Input	t Enabl	e regist	er								
ADER0	bit	7	6	5	4	3	2	1	0	Initial Value	Access
Address : 000	01Ен	ADE7	ADE6	ADE5	ADE4	ADE3	ADE2	ADE1	ADE0	11111111в	R/W
ADER1	bit	15	14	13	12	11	10	9	8		
Address : 000	01Fн	_	_	_	_	ADE11	ADE10	ADE9	ADE8	1111в	R/W
- : Unused							•				

(2) Analog Innut Enchle regio

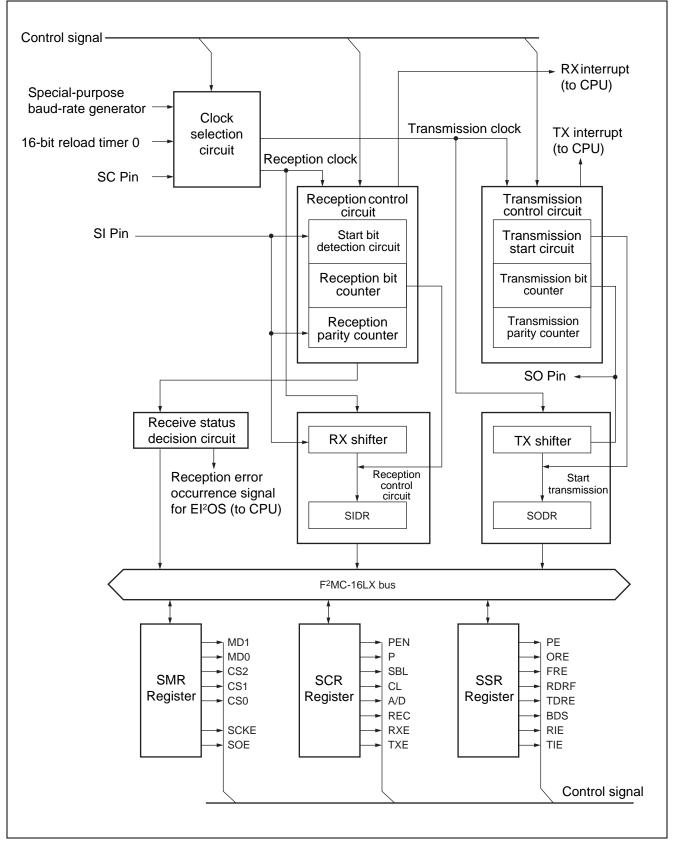
Each pin of port 6 is controlled by the analog input enable register as follow.

- 0 : Port input/output mode.
- 1 : Analog input mode. This bit becomes "1" after a reset.

2. UART

UART is a serial I/O port for asynchronous (start-stop synchronization) communication or CLK synchronous communications.

- With full-duplex double buffer
- Clock asynchronous (start-stop synchronization), CLK synchronous communications (no start-bit/stop-bit) can be used.
- Supports multi-processor mode
- Built-in dedicated baud rate generator


Asynchronous : 120192/60096/30048/15024/781.25 K/390.625 kbps

- CLK synchronous : 25 M/12.5 M/6.25 M/3.125 M/1.5627 M/781.25 kbps
- Variable baud rate can be set by an external clock.
- 7 bits data length (only asynchronous normal mode) /8 bits length
- Master/slave type communication function (at multiprocessor mode) : The communication between one (master) to n (slave) can be operating.
- Error detection functions(parity, framing, overrun)
- Transmission signal format is NRZ

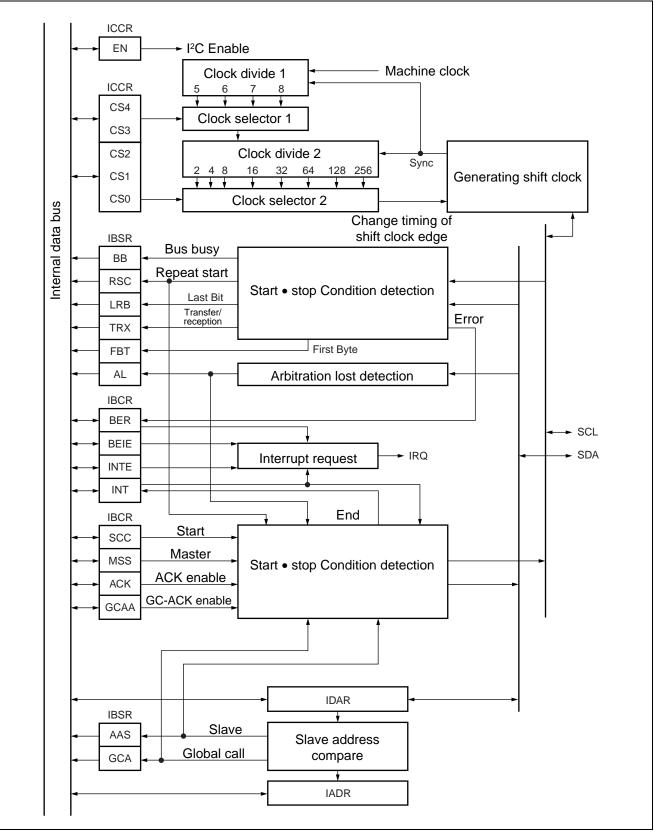
(1) Register list

	15				8 7				0	
			CDCR			—				
		SCR SMR								
			SSR			SIDR	(R)/SOE	DR (W)		
		I	— 8-bit -		→ <		— 8-bit		→	
Serial mode register (SM	IR0,	SMR1)								
	bit	7	6	5	4	3	2	1	0	Initial Value
Address : 000020)н Зн	MD1	MD0	CS2	CS1	CS0	—	SCKE	SOE	00000 - 00в
000020		R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	Read/Write
Serial control register(SC	CR0,	SCR1)								
00000	bit	15	14	13	12	11	10	9	8	Initial Value
Address : 000021	lн Эн	PEN	Р	SBL	CL	A/D	REC	RXE	TXE	00000100в
000020		R/W	R/W	R/W	R/W	R/W	W	R/W	R/W	Read/Write
Serial input/output registe	•	SIDR0, S	SIDR1/S	ODR0,	SODR1)				
	bit	SIDR0, S 7	6	ODR0, 5	SODR1 4) 3	2	1	0	Initial Value
	bit						2 D2	1 D1	0 D0	Initial Value XXXXXXXXB
Serial input/output registe Address : 000022 000024	bit	7	6	5	4	3				•
	bit 2н Ан	7 D7 R/W	6 D6	5 D5	4 D4	3 D3	D2	D1	D0	XXXXXXXXB Read/Write
Address : 000022 00002A Serial Data Register (SS	bit 2н Ан R0, bit	7 D7 R/W	6 D6	5 D5	4 D4	3 D3	D2	D1	D0	XXXXXXXXB
Address : 000022 00002A Serial Data Register (SS	bit 2н Ан R0, bit	7 D7 R/W SSR1)	6 D6 R/W	5 D5 R/W	4 D4 R/W	3 D3 R/W	D2 R/W	D1 R/W	D0 R/W	XXXXXXXXB Read/Write
Address : 000022 00002A	bit 2н Ан R0, bit	7 D7 R/W SSR1) 15	6 D6 R/W 14	5 D5 R/W 13	4 D4 R/W 12	3 D3 R/W 11	D2 R/W 10	D1 R/W 9	D0 R/W 8) XXXXXXXXB Read/Write Initial Value
Address : 000022 00002A Serial Data Register (SS	bit 2н Ан RO, bit Зн Зн	7 D7 R/W SSR1) 15 PE R	6 D6 R/W 14 ORE R	5 D5 R/W 13 FRE R	4 D4 R/W 12 RDRF R	3 D3 R/W 11 TDRE R	D2 R/W 10 BDS	D1 R/W 9 RIE	D0 R/W 8 TIE	 XXXXXXXXB Read/Write Initial Value 00001000B Read/Write
Address : 000022 00002A Serial Data Register (SS Address : 000023 00002E Communication prescale	bit 2H AH RO, bit 3H 3H er col bit	7 D7 R/W SSR1) 15 PE R	6 D6 R/W 14 ORE R	5 D5 R/W 13 FRE R	4 D4 R/W 12 RDRF R	3 D3 R/W 11 TDRE R	D2 R/W 10 BDS	D1 R/W 9 RIE R/W	D0 R/W 8 TIE	XXXXXXXXB Read/Write Initial Value 00001000B
Address : 000022 00002A Serial Data Register (SS Address : 000023 00002E	bit 2H AH RO, bit 3H 3H er col bit	7 D7 R/W SSR1) 15 PE R ntrol reg	6 D6 R/W 14 ORE R ister (CI	5 D5 R/W 13 FRE R DCR0, 0	4 D4 R/W 12 RDRF R CDCR1)	3 D3 R/W 11 TDRE R	D2 R/W 10 BDS R/W	D1 R/W 9 RIE	D0 R/W 8 TIE R/W	 XXXXXXXXB Read/Write Initial Value 00001000B Read/Write
Address : 000022 00002A Serial Data Register (SS Address : 000023 00002E Communication prescale	bit 2H AH RO, bit 3H 3H er col bit	7 D7 R/W SSR1) 15 PE R ntrol reg	6 D6 R/W 14 ORE R ister (CI	5 D5 R/W 13 FRE R DCR0, 0	4 D4 R/W 12 RDRF R CDCR1)	3 D3 R/W 11 TDRE R 11	D2 R/W 10 BDS R/W 10	D1 R/W 9 RIE R/W 9	D0 R/W 8 TIE R/W 8	 XXXXXXXXB Read/Write Initial Value 00001000B Read/Write Initial Value

(2) Block Diagram

3. I²C Interface

I²C interface is the serial input/output port that support Inter IC BUS and functions as the master/slave device on the I²C bus. MB90800 series have 1 channel of the built-in I²C interface.


It has the features of I²C interface below.

- Master/slave sending and receiving
- Arbitration function
- Clock synchronization function
- Slave address and general call address detection function
- Detecting transmitting direction function
- · Repeat generating and detecting function of the start conditions
- Bus error detection function
- The forwarding rate can be supported to 100 kbps.

C status register (IBSR) bit									Initial Value
Address :00006AH	7	6	5	4	3	2	1	0	ПППаг Value
	BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	
	R	R	R	R	R	R	R	R	Read/Write
² C control register (IBCR)									
bit	15	14	13	12	11	10	9	8	Initial Value
Address :00006BH	BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT	0000000в
L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
² C clock control register (IC	CR)								
bit ⊐ Address :00006C	7	6	5	4	3	2	1	0	Initial Value XX0XXXX8
	—	_	EN	CS4	CS3	CS2	CS1	CS0	ллиллин
-			R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
² C data register(IDAR)									
bit	15	14	13	12	11	10	9	8	Initial Value
Address :00006Eн	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
² C address register (IADR)									
bit Address :00006Dب ر	7	6	5	4	3	2	1	0	Initial Value 1 XXXXXXXB
AUUIESS .00000DH	_	A6	A5	A4	A3	A2	A1	A0	
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write

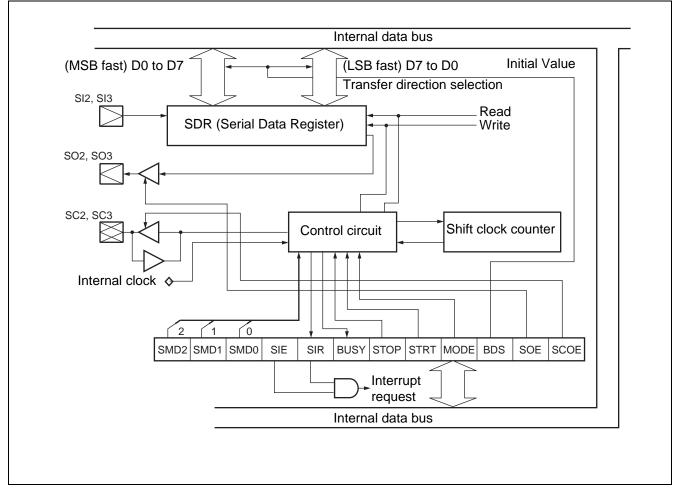
(1) Register list

(2) Block Diagram

FU

4. Extended I/O serial interface

The extended I/O serial interface is a serial I/O interface that can transfer data through the adoption of 8-bit \times 2 channels configured clock synchronization scheme. The extended I/O serial interface also has two alternatives in data transfer called LSB first and MSB first.


The serial I/O interface operates in two modes:

- Internal shift clock mode : Transfer data in sync with the internal clock.
- External shift clock mode : Transfers data in sync with the clock input through an external pin (SC) . In this mode, transfer operation performed by the CPU instruction is also available by operating the general-use port sharing an external pin (SC) .

(1) Register list

Serial mode control status re	egister (SMCS0	, SMCS	1)							
bit	15	14	13	12	11	10	9	8	Initial Value		
Address : <mark>000060н</mark> 000064н	SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	0000010в		
	R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	Read/Write		
bit	7	6	5	4	3	2	1	0			
Address :000061⊦ 000065⊦	—	—	—		MODE	BDS	SOE	SCOE	0000в		
	_		_	_	R/W	R/W	R/W	R/W	Read/Write		
Serial Data Register (SDR0, SDR1)											
bit	7	6	5	4	3	2	1	0			
Address :000062⊦ 000066⊦	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB		
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write		
Communication Prescaler co	ontrol re	gister (S	SDCR0,	SDCR	1)						
bit	15	14	13	12	11	10	9	8			
Address :000063⊦ 000067⊦	MD	—	—	_	Reserved	DIV2	DIV1	DIV0	00000в		
	R/W	_	_	_	R/W	R/W	R/W	R/W	Read/Write		
- : Unused											

(2) Block Diagram

5. 8/10-bit A/D converter

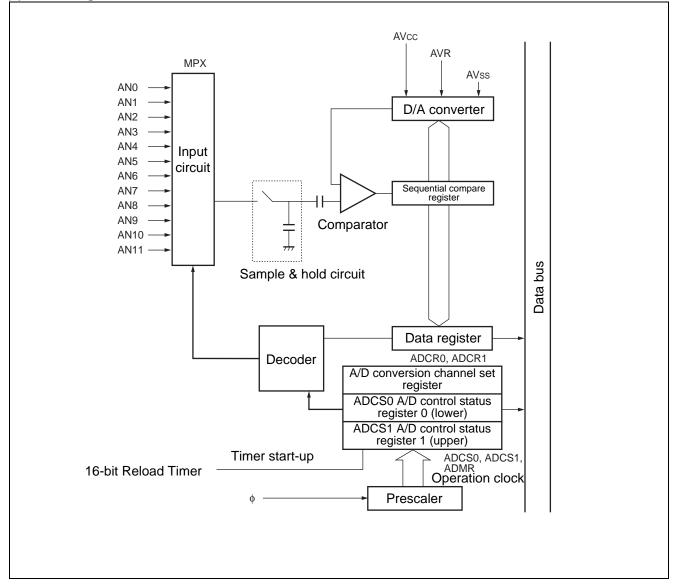
The feature of 8/10-bit A/D converter is shown as follows.

- conversion time : 3.1 μs minimum per 1 channel

(78 machine cycle/at machine clock 25 MHz/including the sampling time)

• Sampling time : 2.0 µs minimum per 1channel

(50 machine cycle/at machine clock 25 MHz)


- Uses RC-type successive approximation conversion method with a sample & hold circuit
- 8-bit resolution or 10-bit resolution can be select.
- 12 channel program-selectable analog inputs.

1 5	5 1
Single conversion mode	: Convert specified 1 channel
Scan conversion mode	: Continuous plural channels (maximum 12 channels can be programmed) are
	converted.
Continuous conversion mode	: Selected channel converted continuously.
Stop conversion time	: Perform conversion for one channel, then pause it to wait for the next activation
	trigger (synchronizes the conversion start timing)

- El²OS can be activated by outputting the interrupt request when the A/D conversion completes.
- If the A/D conversion is performed under the condition of the interrupt enable, the converting data will be protected.
- Selectable conversion activation trigger : Software, or reload timer (rising edge)

(1) Register list

ADCS1, ADCS0 (Contro	ol status	register	.)						
ADCS0 bit	7	6	5	4	3	2	1	0	Initial Value
Address : 000034H	MD1	MD0	_	_	_		_	—	00 в
	R/W	R/W		_		_			Read/Write
ADCS1 bit	15	14	13	12	11	10	9	8	Initial Value
Address : 000035н	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	W	R/W	Read/Write
ADCR1, ADCR0 (Data	egister)								
ADCR0 bit	7	6	5	4	3	2	1	0	Initial Value
Address : 000036н	D7	D6	D5	D4	D3	D2	D1	D0	XXXXXXXXB
	R	R	R	R	R	R	R	R	Read/Write
ADCR1 bit	15	14	13	12	11	10	9	8	Initial Value
Address : 000037н	S10	ST1	ST0	CT1	CT0	—	D9	D8	00101 - ХХв
	W	W	W	W	W	_	R	R	Read/Write
- : Unused									

6. 16 bits PPG

The PPG timer consists of the following:

- Prescaler
- 16-bit down-counter: 1
- 16-bit data register with a cycle setting buffer
- 16-bit compare register with a duty setting buffer
- Pin control unit

The PPG timer can output pulses synchronized to the software trigger.

The output pulse can be changed to any cycle and duty freely by updating the PCSRL, PCSRH/PDUTL, PDUTH registers.

• PWM function

The PPG timer can output pulses programmably by updating the PCSR and PDUT registers described above in synchronization to the trigger.

Can also be used as a D/A converter by an external circuit.

· Single shot function

By detecting an edge of the trigger input, a single pulse can be output.

• 16-bit down counter

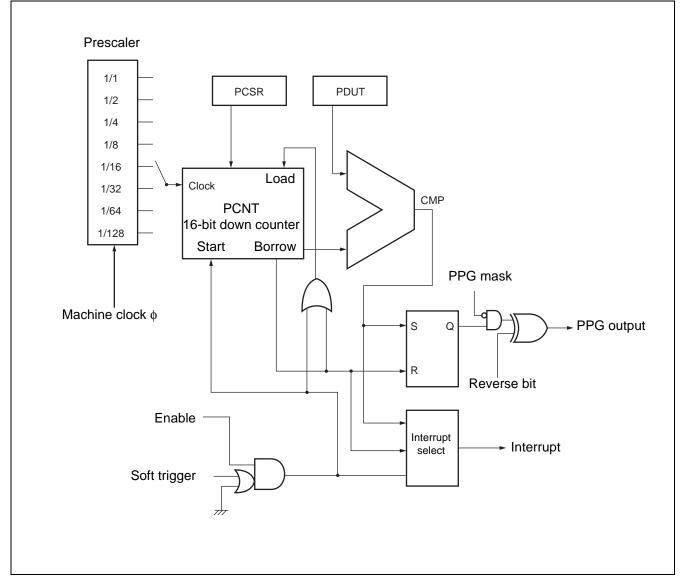
The counter operation clock comes from eight kinds optional. There are eight kinds of internal clocks.

 $(\phi, \phi 2, \phi 4, \phi 8, \phi 16, \phi 32, \phi 64, \phi 128) \phi$: machine clock

The counter can be initialized to "FFFFH" at a reset or counter borrow.

• Interrupt request

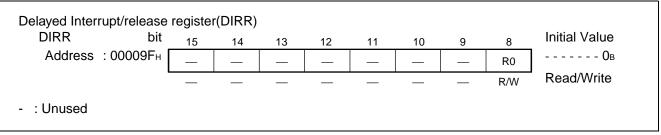
The PPG timer generates an interrupt request when :

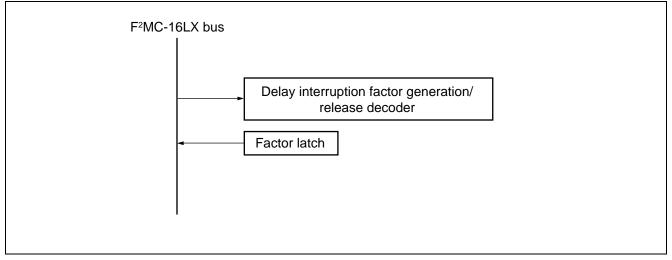

- Timer start-up
- Counter borrow occurrence (cycle match)
- Duty match occurrence

(1) Register list

PCNTH (P	CNI	H0/PCN	NTH1 PI	PG Con	trol Stat	us regis	ster)			
000077 н	bit	15	14	13	12	11	10	9	8	Initial Value
00007F н		CNTE	STGR	MDSE	RTRG	CKS2	CKS1	CKS0	PGMS	000000-в
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
PCNTL (P	CNT	L0/PCN	TL1 PP	G Contr	ol Statu	s registe	er)			
000076н	bit	7	6	5	4	3	2	1	0	Initial Value
00007Ен		_		IREN	IRQF	IRS1	IRS0	POEN	OSEL	000000в
		—	_	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
PDCRH (F	DCF	RH0/PD0	CRH1 P	PG Dov	wn Cour	ter Reg	jister)			
000071н	bit	15	14	13	12	11	10	9	8	Initial Value
000079н		DC15	DC14	DC13	DC12	DC11	DC10	DC09	DC08	1111111в
		R	R	R	R	R	R	R	R	Read/Write
PDCRL (P	DCR	L0/PDC	RL1 PF	PG Dow	n Count	er Regis	ster)			
000070н	bit	7	6	5	4	3	2	1	0	Initial Value
000078н		DC07	DC06	DC05	DC04	DC03	DC02	DC01	DC00	1111111в
		R	R	R	R	R	R	R	R	Read/Write
PCSRH (P	CSR	H0/PCS	SRH1 P	PG cycl	e set re	gister)				
000073н	bit	15	14	13	12	11	10	9	8	Initial Value
000073н 00007Вн	bit	15 CS15	14 CS14	13 CS13	12 CS12	11 CS11	10 CS10	9 CS09	8 CS08	XXXXXXXXB
00007Вн		CS15 W	CS14 W	CS13 W	CS12 W	CS11 W	1			
		CS15 W	CS14 W	CS13 W	CS12 W	CS11 W	CS10	CS09	CS08	XXXXXXXXB
00007Bн PCSRL (P 000072н		CS15 W	CS14 W	CS13 W	CS12 W	CS11 W	CS10	CS09	CS08 W 0	XXXXXXXXB Read/Write Initial Value
00007Вн PCSRL (P	CSR	CS15 W L0/PCS	CS14 W RL1 PP	CS13 W PG cycle	CS12 W set reg	CS11 W ister)	CS10 W	CS09 W	CS08 W	XXXXXXXXB Read/Write Initial Value XXXXXXXB
00007Вн PCSRL (P 000072н 00007Ан	CSR bit	CS15 W L0/PCS 7 CS07 W	CS14 W RL1 PP 6 CS06 W	CS13 W PG cycle 5 CS05 W	CS12 W set reg 4 CS04 W	CS11 W ister) 3 CS03 W	CS10 W 2	CS09 W 1	CS08 W 0	XXXXXXXXB Read/Write Initial Value
00007Bн PCSRL (P 000072н	CSR bit	CS15 W L0/PCS 7 CS07 W	CS14 W RL1 PP 6 CS06 W	CS13 W PG cycle 5 CS05 W	CS12 W set reg 4 CS04 W	CS11 W ister) 3 CS03 W	CS10 W 2 CS02	CS09 W 1 CS01	CS08 W 0 CS00	XXXXXXXXB Read/Write Initial Value XXXXXXXB
00007Bн PCSRL (P 000072н 00007Ан PDUTH (P 000075н	CSR bit	CS15 W L0/PCS 7 CS07 W	CS14 W RL1 PP 6 CS06 W	CS13 W PG cycle 5 CS05 W	CS12 W set reg 4 CS04 W	CS11 W ister) 3 CS03 W	CS10 W 2 CS02	CS09 W 1 CS01	CS08 W 0 CS00	XXXXXXXXB Read/Write Initial Value XXXXXXXB
00007Bн PCSRL (P 000072н 00007Ан PDUTH (P	CSR bit	CS15 W L0/PCS 7 CS07 W H0/PDL	CS14 W RL1 PP 6 CS06 W JTH1 PI	CS13 W PG cycle 5 CS05 W PG duty	CS12 W set reg 4 CS04 W set regi	CS11 W ister) 3 CS03 W ister)	CS10 W 2 CS02 W	CS09 W 1 CS01 W	CS08 W 0 CS00 W	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB
00007Вн PCSRL (P 000072н 00007Ан PDUTH (P 000075н 00007Dн	CSR bit DUT bit	CS15 W L0/PCS 7 CS07 W H0/PDL 15 DU15 W	CS14 W RL1 PP 6 CS06 W JTH1 PI 14 DU14 W	CS13 W PG cycle 5 CS05 W PG duty 13 DU13 W	CS12 W set reg 4 CS04 W set regi 12 DU12 W	CS11 W ister) 3 CS03 W ister) 11 DU11 W	CS10 W 2 CS02 W 10	CS09 W 1 CS01 W 9	CS08 W 0 CS00 W 8	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value
00007Bн PCSRL (P 000072н 00007Ан PDUTH (P 000075н	CSR bit DUT bit	CS15 W L0/PCS 7 CS07 W H0/PDL 15 DU15 W	CS14 W RL1 PP 6 CS06 W JTH1 PI 14 DU14 W	CS13 W PG cycle 5 CS05 W PG duty 13 DU13 W	CS12 W set reg 4 CS04 W set regi 12 DU12 W	CS11 W ister) 3 CS03 W ister) 11 DU11 W	CS10 W 2 CS02 W 10 DU10	CS09 W 1 CS01 W 9 DU09	CS08 W CS00 W 8 DU08	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB
00007Вн PCSRL (P 000072н 00007Ан PDUTH (P 000075н 00007Dн PDUTL (Pl 000074н	CSR bit DUT bit	CS15 W L0/PCS 7 CS07 W H0/PDL 15 DU15 W	CS14 W RL1 PP 6 CS06 W JTH1 PI 14 DU14 W TL1 PP 6	CS13 W PG cycle 5 CS05 W PG duty 13 DU13 W G duty s 5	CS12 W set reg 4 CS04 W set regi 12 DU12 W	CS11 W ister) 3 CS03 W ister) 11 DU11 W iter) 3	CS10 W 2 CS02 W 10 DU10 W 2	CS09 W 1 CS01 W 9 DU09 W 1	CS08 W CS00 W 8 DU08 W 0	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value
00007Bн PCSRL (P 000072н 00007Ан PDUTH (P 000075н 00007Dн	CSR bit DUT bit	CS15 W L0/PCS 7 CS07 W H0/PDL 15 DU15 W L0/PDU	CS14 W RL1 PP 6 CS06 W JTH1 PI 14 DU14 W TL1 PP	CS13 W PG cycle 5 CS05 W PG duty 13 DU13 W G duty s	CS12 W set reg 4 CS04 W set regis 12 DU12 W set regis	CS11 W ister) 3 CS03 W ister) 11 DU11 W iter)	CS10 W 2 CS02 W 10 DU10 W	CS09 W 1 CS01 W 9 DU09 W	CS08 W CS00 W 8 DU08 W	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB
00007Вн PCSRL (P 000072н 00007Ан PDUTH (P 000075н 00007Dн PDUTL (Pl 000074н 00007Сн	CSR bit DUT bit DUTI bit	CS15 W L0/PCS 7 CS07 W H0/PDL 15 DU15 W L0/PDU 7	CS14 W RL1 PP 6 CS06 W JTH1 PI 14 DU14 W TL1 PP 6	CS13 W PG cycle 5 CS05 W PG duty 13 DU13 W G duty s 5	CS12 W set reg 4 CS04 W set regi 12 DU12 W set regis 4	CS11 W ister) 3 CS03 W ister) 11 DU11 W iter) 3	CS10 W 2 CS02 W 10 DU10 W 2	CS09 W 1 CS01 W 9 DU09 W 1	CS08 W CS00 W 8 DU08 W 0	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value
00007Вн PCSRL (P 000072н 00007Ан PDUTH (P 000075н 00007Dн PDUTL (Pl 000074н	CSR bit DUT bit DUTI bit	CS15 W L0/PCS 7 CS07 W H0/PDL 15 DU15 W L0/PDU 7 DU07	CS14 W RL1 PP 6 CS06 W JTH1 PI 14 DU14 W TL1 PP 6 DU06	CS13 W PG cycle 5 CS05 W PG duty 13 DU13 W G duty s 5 DU05	CS12 W set reg 4 CS04 W set regi 12 DU12 W set regis 4 DU04	CS11 W ister) 3 CS03 W ister) 11 DU11 W iter) 3 DU03	CS10 W 2 CS02 W 10 DU10 W 2 DU02	CS09 W 1 CS01 W 9 DU09 W 1 DU01	CS08 W CS00 W 8 DU08 W 0 DU00	XXXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB Read/Write Initial Value XXXXXXXB

(2) Block Diagram

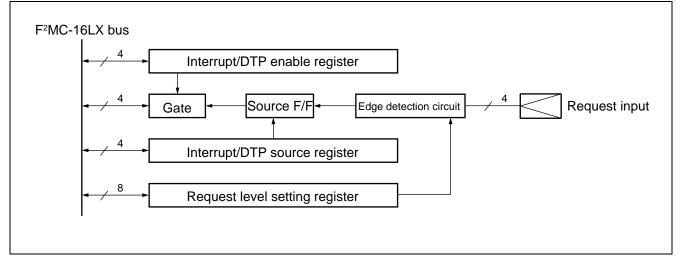

• 16-bit PPG ch.0/ch.1 block diagram



7. Delay interrupt generator module

The delayed interrupt generation module outputs an interrupt request for task switching. The hardware interrupt request can be generated by software.

(1) Register list

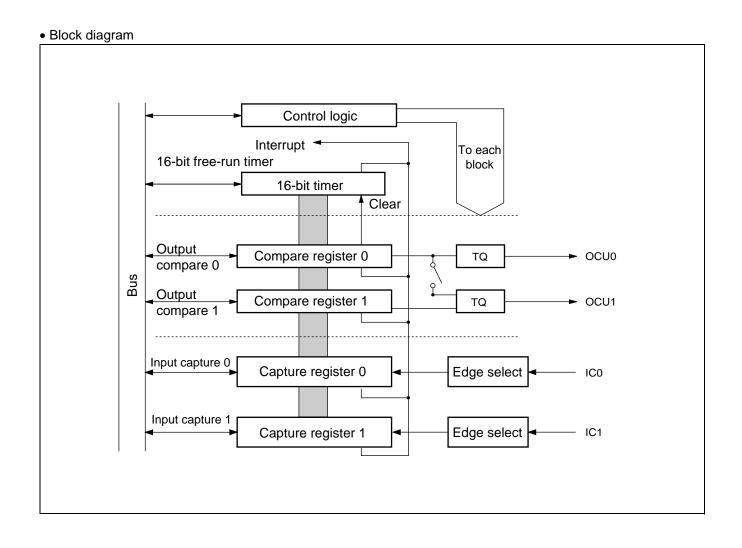


8. DTP/External interrupt

DTP (Data Transfer Peripheral)/External interrupt circuit detects the interrupt request input from the external interrupt input terminal, and outputs the interrupt request.

(1) Register list

	oit <u>7</u>	6	5	4	3	2	1	0	Initial Value
Address : 000030)н	—	_	—	EN3	EN2	EN1	EN0	0000в
		—	_	_	R/W	R/W	R/W	R/W	Read/Write
Interrupt/DTP source r	egister (E	IRR)							
	it <u>15</u>	14	13	12	11	10	9	8	Initial Value
Address : 000031	н	_	_	_	ER3	ER2	ER1	ER0	ХХХХв
	_	_	_	_	R/W	R/W	R/W	R/W	Read/Write
Request level setting r	egister (E	LVR)							
	it	6	5	4	3	2	1	0	Initial Value
Address : 000032	H LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
- : Unused									



9. 16-bit input/output timer

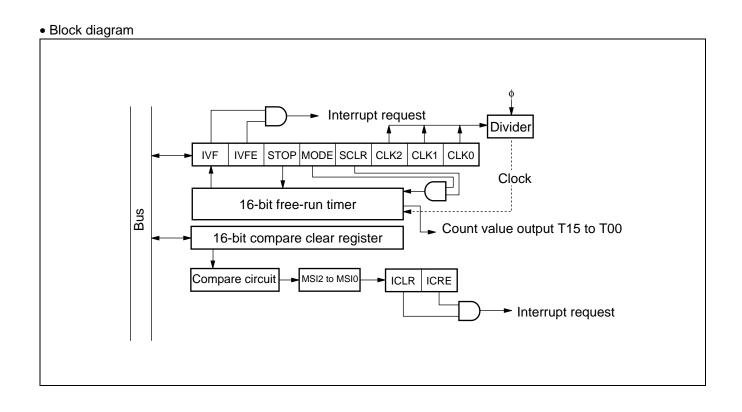
The 16-bit I/O timer consists of one 16-bit free-run timer, two output compare and two input capture. This function enables six independent waveforms to be output based on the 16-bit free-run timer, and input pulse widths and external clock frequencies to be measured.

• Register list

				0
00003Вн/00003Ан		CPCLR		Compare clear register
00003Dh/00003Ch		TCDT		Timer counter data register
00003Fн/00003Eн	TCCSH		TCCSL	Timer counter control/status register
16-bit Output Compare				
bit 15 00004Ан/00004Вн, Г				0 Compare register
00004CH/00004DH	C	OCCP0, OCCP	1	
00004Fh/00004Eh	OCSH		OCSL	Control status register
 16-bit Input Capture 				
bit 15				Input capture data register
bit 15 000044н/000045н, 000046н/000047н		IPCP0, IPCP1		

DS07-13733-6E

(1) 16-bit free-run timer

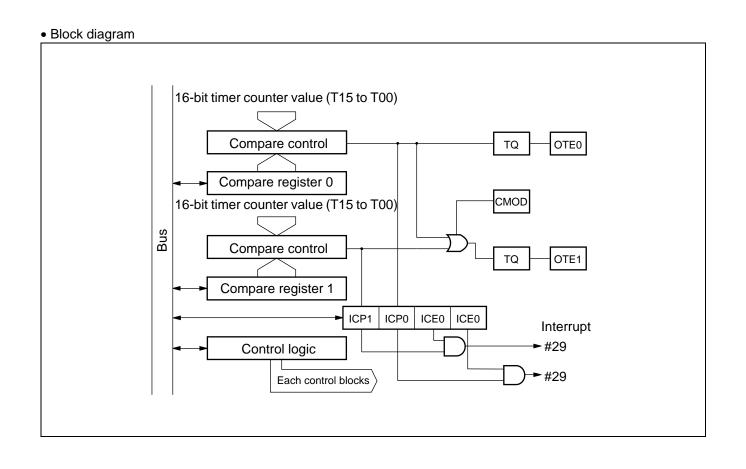

The 16-bit free-run timer consists of a 16-bit up-down counter and control status register.

Counter value of 16-bit free-run timer is available as base timer for input capture and output compare.

- Clock for the counter operation can be selected from eight types.
- The counter overflow interruption can be generated.
- Setting the mode enables initialization of the counter through compare-match operation with the value of the compare clear register in the output compare and that of the free-run timer counter.

• Register list

Compare clear register (CPCLR)							
bit	15	14	13	12	11	10	9	8	Initial Value
00003Вн	CL15	CL14	CL13	CL12	CL11	CL10	CL09	CL08	XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
bit	7	6	5	4	3	2	1	0	Initial Value
00003Ан	CL07	CL06	CL05	CL04	CL03	CL02	CL01	CL00	XXXXXXXXB
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
Timer counter data regis bit	•	,	10	10		10	•		Initial Value
00003Dн	15 T15	14 T14	13 T13	12 T12	11 T11	10 T10	9 T09	8 T08	0000000в
		R/W			R/W		R/W		Read/Write
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
L.:4									la tial) (alua
bit	7	6	5	4	3	2	1	0	Initial Value
00003Сн	T07	T06	T05	T04	T03	T02	T01	T00	0000000B
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
Timer counter control/sta	atus reg	ister (T(CCS)						
bit	15	14	13	12	11	10	9	8	Initial Value
00003Fн	ECKE	_	_	MSI2	MSI1	MSI0	ICLR	ICRE	000000в
	R/W	_	_	R/W	R/W	R/W	R/W	R/W	Read/Write
bit	7	6	5	4	3	2	1	0	Initial Value
00003Ен	IVF	IVFE	STOP	MODE	SCLR	CLK2	CLK1	CLK0	0000000в
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
- : Unused									


(2) Output compare

The output compare consists of 16-bit compare registers, compare output pin part and a control register. It can reverse the output level for the pin and at the same time, generate an interrupt when the 16-bit free-run timer value matches a value set in one of the 16-bit compare registers of this module.

- It has a total of six compare registers that can operate independently. In addition, the output can be set to be controlled by using two compare registers.
- An interrupt can be set by a comparing match.

• Register list

bit	15	14	13	12	11	10	9	8	Initial Value
00004Вн 00004Dн	OP15	OP14	OP13	OP12	OP11	OP10	OP09	OP08	0000000в
00004DH -	R/W	Read/Write							
bit									Initial Value
	7	6	5	4	3	2	1	0	
00004Ан 00004Сн	OP07	OP06	OP05	OP04	OP03	OP02	OP01	C00	0000000в
00004Сн L	R/W	Read/Write							
Control register (OCSH)									
bit	15	14	13	12	11	10	9	8	Initial Value
00004Fн	_	_	_	CMOD	OTE1	OTE0	OTD1	OTD0	00000в
L	—			R/W	R/W	R/W	R/W	R/W	Read/Write
Control register (OCSL)									
bit	7	6	5	4	3	2	1	0	Initial Value
00004Ен	IOP1	IOP0	IOE1	IOE0		—	CST1	CST0	000000в
L	R/W	R/W	R/W	R/W	_	_	R/W	R/W	Read/Write
- : Unused									

(3) Input capture

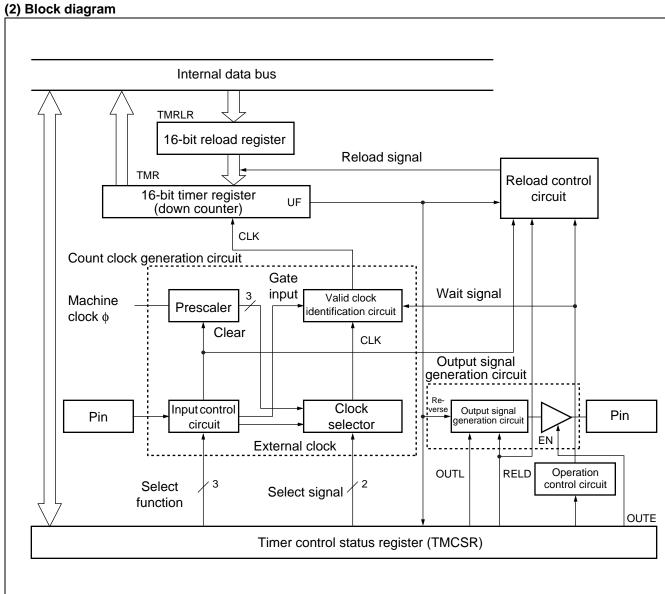
The input capture consists of input capture and control registers. Each input capture has its corresponding external input pin.

This module has a function that detects a rising edge, falling edge or both edges and holds a value of the 16bit free-run timer in a register at the time of detection. It can also generate an interrupt when detecting an edge.

- The detection edge of an external input can be selected from among three types. Rising edge/falling edge/ both edges.
- It can generate an interrupt when it detects the valid edge of the external input.

• Register list

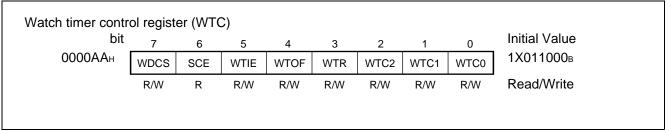
Input capture data reg	ister	· (IPCP(15), IPCP [.] 14	1) 13	12	11	10	9	8	Initial Value	
000045н 000047н	Dit	CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08	XXXXXXXXB	
0000 111		R	R	R	R	R	R	R	R	Read/Write	
000044	bit	7	6	5	4	3	2	1	0	Initial Value	
000044н 000046н			CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00	XXXXXXXXB
		R	R	R	R	R	R	R	R	Read/Write	
Control status register	· (IC	S01)									
	bit	7	6	5	4	3	2	1	0	Initial Value	
000048н		ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00	0000000в	
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write	

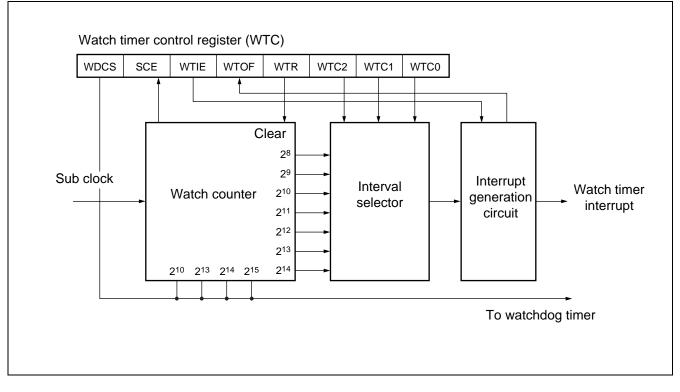


10. 16-bit reload timer

The 16-bit reload timer provides two functions either one which can be selected, the internal clock mode that performs the count down by synchronizing with 3-type internal clocks and the event count mode that performs the count down by detecting the arbitration. This timer defines an underflow as a transition of the count value from 0000_{H} to FFFF_H. Therefore, when the equation (counted value = reload register setting value+1) holds, an underflow occurs. Either mode can be selected for the count operation from the reload mode which repeats the count by reloading the count setting value at the underflow occurrence or the one-shot mode which stops the count at the underflow occurrence. The interrupt can be generated at the counter underflow occurrence so as to correspond to the DTC.

(1) Register list

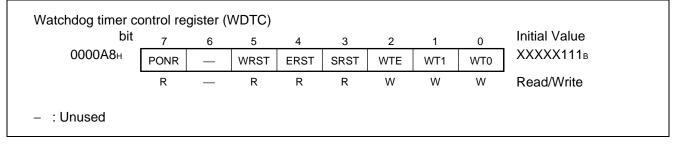

bit	15	14	13	12	11	10	9	8	Initial Value
000051 н			_	_	CSL1	CSL0	MOD2	MOD1	0000в
000055H					R/W	R/W	R/W	R/W	Read/Write
000059н									
imer control stat	us regist	ter (lowe	er) (TMC	CSR0L t	o TMCS	SR2L)			
bit	7	6	5	4	3	2	1	0	Initial Value
000050H	MOD0	OUTE	OUTL	RELD	INTE	UF	CNTE	TRG	0000000в
000054н 000058н	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write
16-bit timer regis	ster/16-b	oit reload	d registe	er TMR() to TMF	R2/TMR	LR0 to	TMRLR2	
	ster/16-k	oit reload 14	d registe	er TMR(12) to TMF 11	R2/TMR 10	LR0 to ⁻ 9	TMRLR2 8	Initial Value
16-bit timer regis bit 000053⊦			-						
16-bit timer regis bit	15	14	13	12	11	10	9	8	Initial Value
16-bit timer regis bit 000053н 000057н	15 D15 R/W	14 D14 R/W	13 D13 R/W	12 D12 R/W	11 D11	10 D10	9 D9	8 D8	Initial Value
16-bit timer regis bit 000053н 000057н 00005Вн	15 D15 R/W	14 D14 R/W	13 D13 R/W	12 D12 R/W	11 D11	10 D10	9 D9	8 D8	Initial Value
16-bit timer regis bit 000053н 000057н 00005Вн MR0 to TMR2/T	15 D15 R/W MRLR0	14 D14 R/W to TMRI	13 D13 R/W LR2 (lov	12 D12 R/W wer)	11 D11 R/W	10 D10 R/W	9 D9 R/W	8 D8 R/W	Initial Value XXXXXXXB Read/Write

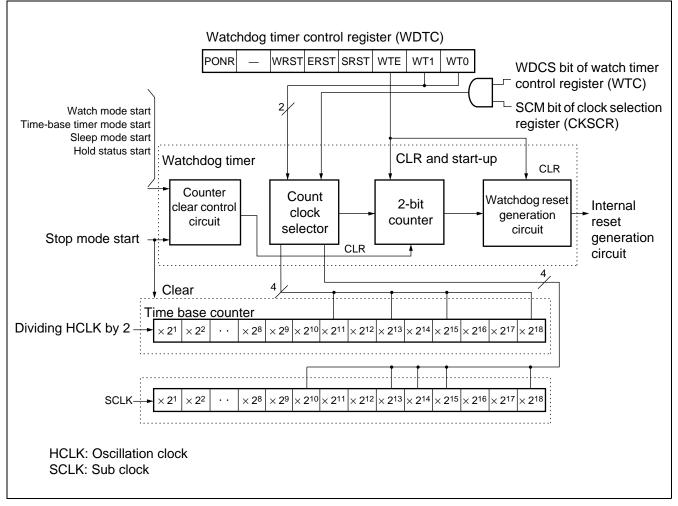


11. Watch timer

The watch timer is a 15-bit timer using the subclock. It can generate the interrupt request for each interval time. The watch timer can also be used as the clock source of the watchdog timer by setting so.

(1) Register list

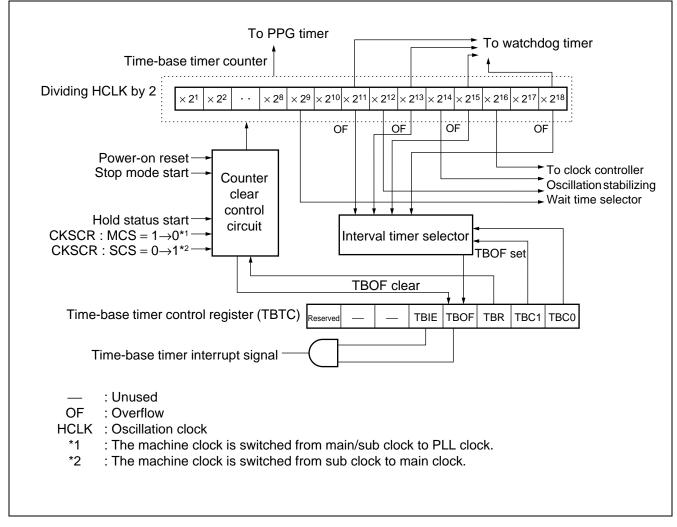




12. Watchdog timer

The watchdog timer is a timer counter provided for preventing program malfunction. The watchdog timer is a 2bit counter operating with an output of the timebase timer or watch timer as count clock and resets the CPU when the counter is not cleared within the interval time.

(1) Register list

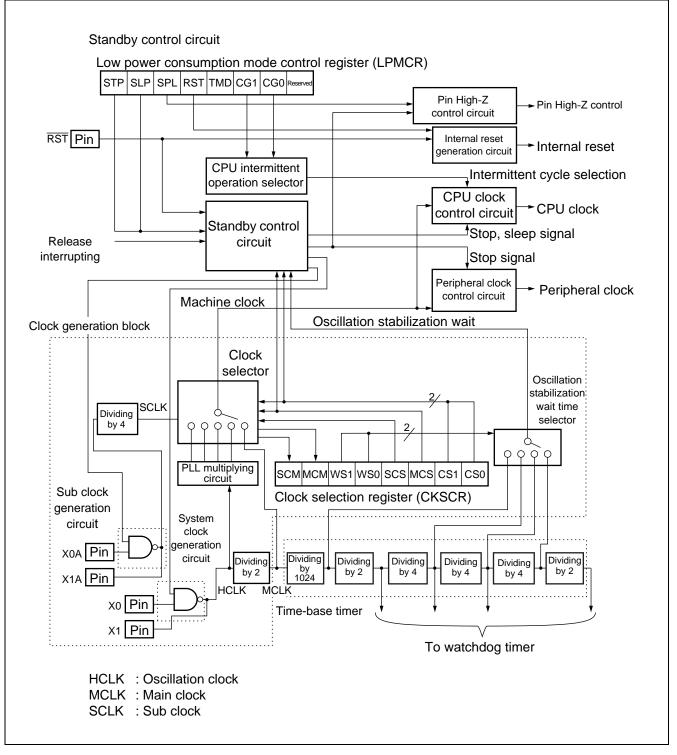


13. Time-base timer

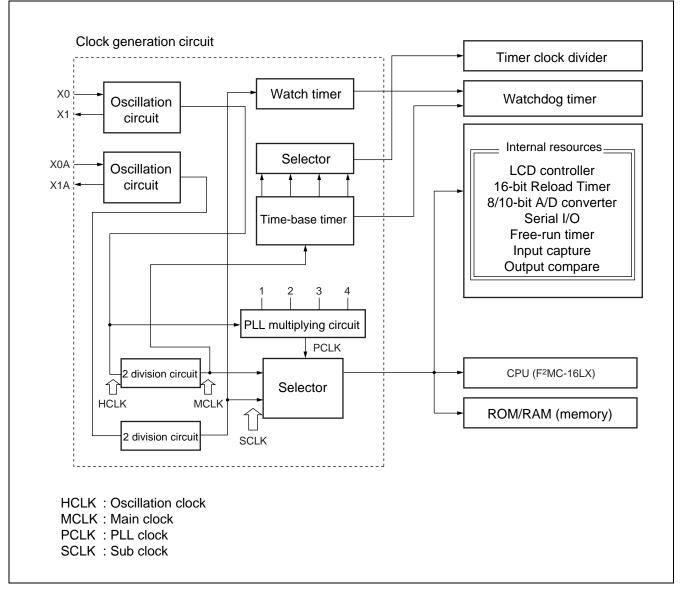
The time-base timer has a function that enables a selection of four interval times using 18-bit free-run counter (time-base counter) with synchronizing to the internal count clock (two division of original oscillation). Furthermore, the function of timer output of oscillation stabilization wait or function supplying operation clocks for watchdog timer are provided.

(1) Register list

bit	15	14	13	12	11	10	9	8	Initial Value
0000А9н	Reserved	_		TBIE	TBOF	TBR	TBC1	TBC0	1 00100в
	R/W			R/W	R/W	W	R/W	R/W	Read/Write


٦

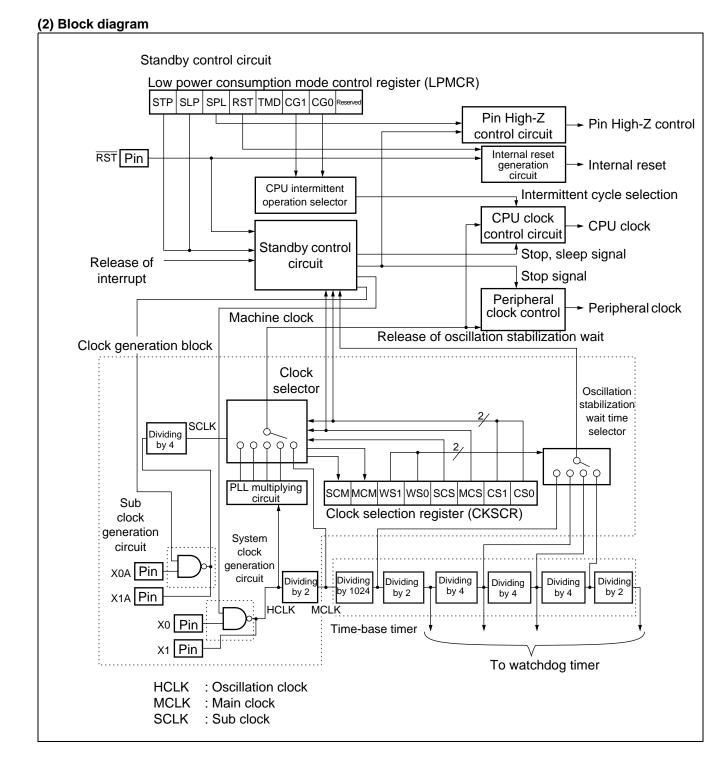
14. Clock generator


The clock generator controls operation of the internal clock which is the operation clock for the CPU and peripheral devices. This internal clock is used as machine clock and its one cycle as machine cycle. In addition, the clock generated by original oscillation is used as oscillation clock and that by internal PLL oscillation as PLL clock.

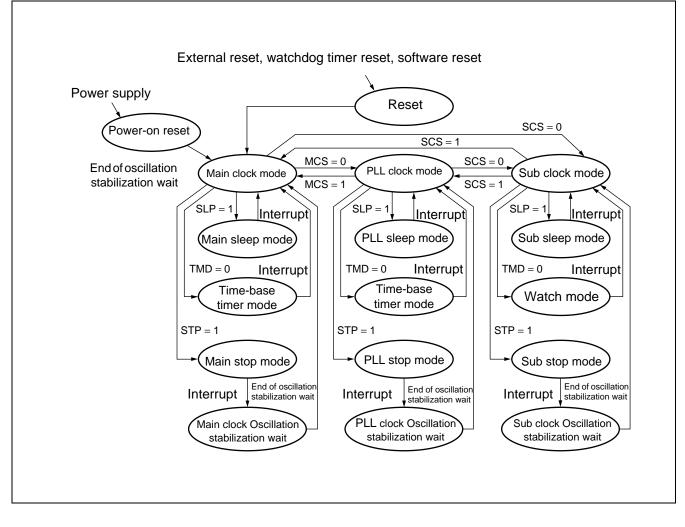
(1) Register list

bit	15	14	13	12	11	10	9	8	Initial Value
0000A1н	SCM	МСМ	WS1	WS0	SCS	MCS	CS1	CS0	11111100в
	R	R	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write

(3) Clock supply map


15. Low power consumption mode

The low-power consumption mode has the following CPU operation modes by selecting the operation clock and operating the control of the clock.

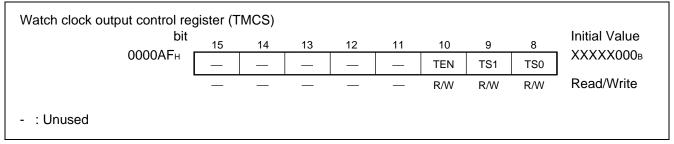

- Clock mode
 (PLL clock mode, main clock mode and sub clock mode)
- CPU intermittent operation mode (PLL clock intermittent operation mode, main clock intermittent operation mode and subclock intermittent operation mode)
- Standby mode (Sleep mode, time base timer mode, stop mode and watch mode)

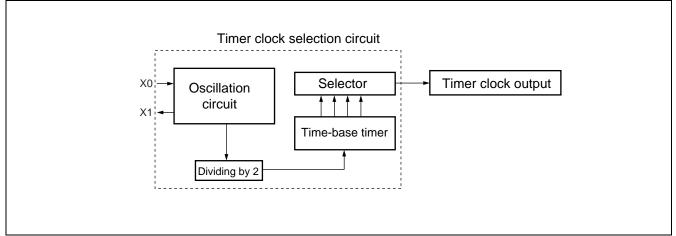
(1) Register list

Low power consur	mption r	node co	ontrol reg	gister (L	PMCR)				
bit	7	6	5	4	3	2	1	0	Initial Value
0000А0н	STP	SLP	SPL	RST	TMD	CG1	CG0	Reserved	00011000в
	W	W	R/W	W	R/W	R/W	R/W	R/W	Read/Write

(3) Figure of status transition

16. Timer clock output

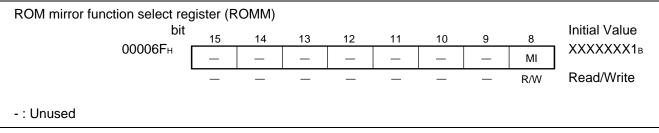

The timer clock output circuit divides the oscillation clock by the time-base timer and generates and outputs the set division clock. Selectable from 32/64/128/256 division of the oscillation clock.

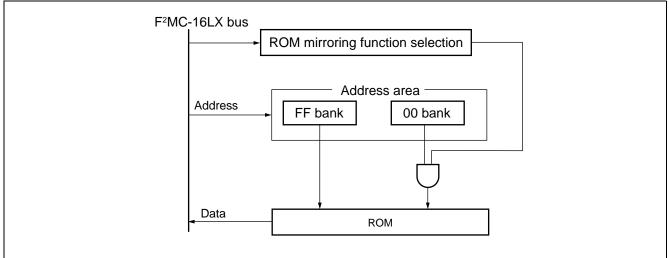

The timer clock output circuit is inactive in reset or stop mode. It is active in normal run, sleep, or pseudo-timer mode.

	PLL_Run	Main_Run	Sleep	Pseudo clock	STOP	Reset
Operation status	0	0	0	0	×	×

Note : When the time-base timer is cleared while using the timer clock output circuit, the clock is not correctly output. For detail of the time-base timer's clear condition, see the section of time-base timer in the MB90800 Hardware Manual.

(1) Register list

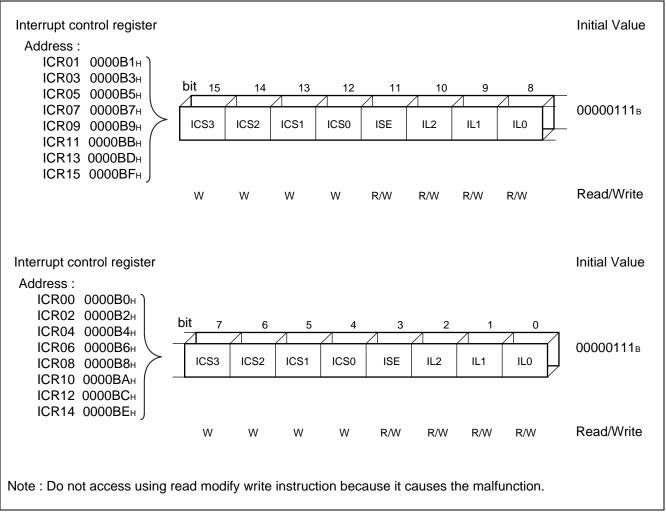



17. ROM mirroring function selection module

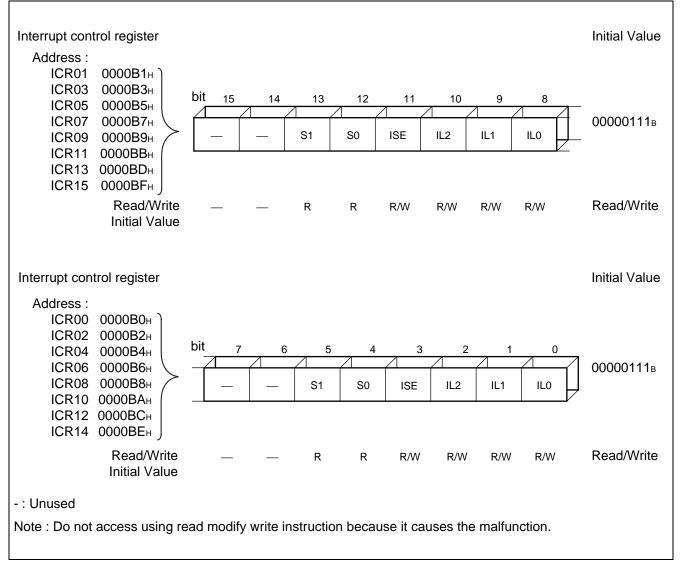
ROM mirroring function selection module provides the setting so that ROM data located in FF bank can be read by access to 00 bank.

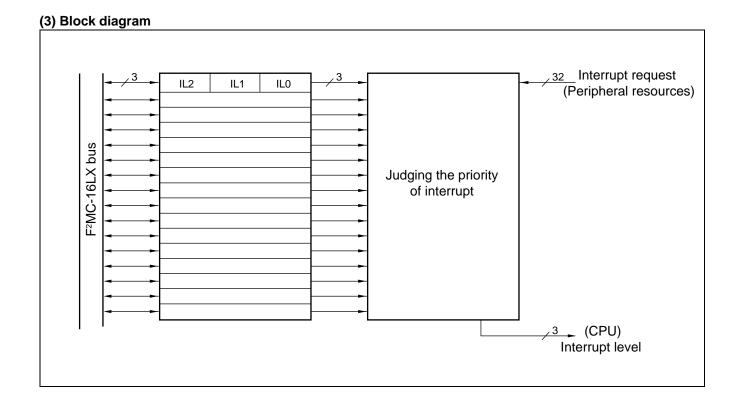
(1) Register list

(2) Block diagram


Note : Do not access to ROM mirroring function selection register in the middle of the operation of the address 008000_H to 00FFFF_H.

18. Interrupt controller


Interrupt control register is in the interrupt controller. The register corresponds to all I/O of interrupt function. The register has following functions;


• Setting of Interrupt level at correspondent peripheral circuit.

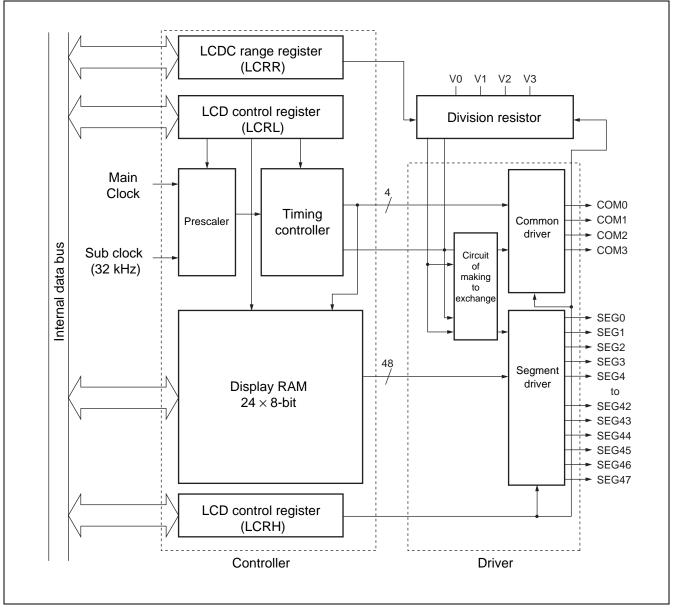
(1) Register list (at writing)

(2)Register list (at reading)

19. LCD controller/driver

The LCD controller/driver contains 24×8 -bit display data memory and controls the LCD display with four common output lines and 48 segment output lines. Three duty outputs can be selected to directly drive the LCD panel (liquid crystal display).

- Contains an LCD driving voltage split resistor. Moreover, the external division resistance can be connected.
- A maximum of four common output lines (COM0 to COM3) and 48 segment output lines (SEG0 to SEG47) are available.
- Contains 24-byte display data memory (display RAM).
- For the duty, 1/2, 1/3, or 1/4 can be selected (restricted by bias setting).
- The LCD can directly be driven.


Bias	1/2 duty	1/3 duty	1/4 duty
1/2 bias	0	×	×
1/3 bias	×	0	0

 \bigcirc : Recommended mode

 \times : Disable

(1) Register list

bit	15	14	13	12	11	10	9	8	Initial Value	
00005Dн	SS4	VS0	CS1	CS0	SS3	SS2	SS1	SS0	0000000в	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write	
LCDC control register (lower) (LCRL)										
bit	7	6	5	4	3	2	1	0	Initial Value	
00005Сн	CSS	LCEN	VSEL	BK	MS1	MS0	FP1	FP0	00010000в	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write	
LCDC range reg	gister (L	CRR)								
bit	7	6	5	4	3	2	1	0	Initial Value	
00005Eн	Reserved	Reserved	SE4	SE3	SE2	SE1	SE0	LCR	0000000в	
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Read/Write	

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rat	ting	Unit	Remarks
Farameter	Symbol	Min	Max	Unit	Rellidiks
	Vcc	Vss - 0.3	Vss + 4.0	V	
Power supply voltage*1	AVcc	Vss – 0.3	Vss + 4.0	V	Vcc ≥ AVcc*2
		Vss - 0.3	Vss + 4.0	V	*3
Input voltage*1	Vı	Vss – 0.3	Vss + 6.0	V	N-ch open-drain (5 V withstand voltagel/O) *4
Output voltage*1	Vo	Vss – 0.3	Vss + 4.0	V	*3
"L" level maximum output current			10	mA	Other than P74, P75, P40 to P47* ⁵
	OL12		30	mA	P74, P75, P40 to P47 (Heavy-current output port) *5
"L" level average output current	OLAV1		3	mA	Other than P74, P75, P40 to P47* ⁶
L level average output current	OLAV2		15	mA	P74, P75, P40 to P47 (Heavy-current output port) *6
"L" level maximum total output current	ΣΙοι		120	mA	
"L" level average total output current	Σ Iolav		60	mA	*7
"H" level maximum output current	Іон11		– 10	mA	Other than P74, P75, P40 to P47* ⁵
	Он12		- 12	mA	P40 to P47 (Heavy-current output port) *5
"H" level average output current	ОНАУ		- 3	mA	*6
"H" level maximum total output current	ΣІон		- 120	mA	
"H" level average total output current	ΣΙοήαν		- 60	mA	*7
Power consumption	Pd		351	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Тѕтс	- 55	+ 150	°C	

*1 : The parameter is based on $V_{SS} = AV_{SS} = 0.0 V.$

*2 : AV cc should not be exceeding V cc at power-on etc.

*3 : V₁, V₀, should not exceed Vcc + 0.3 V.

- *4 : Applicable to pins : P74, P75
- *5 : A peak value of an applicable one pin is specified as a maximum output current.
- *6 : An average current value of an applicable one pin within 100 ms is specified as an average output current. (Average value is found by multiplying operating current by operating rate.)
- *7 : An average current value of all pins within 100 ms is specified as an average total output current. (Average value is found by multiplying operating current by operating rate.)
- WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Parameter	Symbol	Va	lue	Unit	Remarks			
Farameter	Symbol	Min	Max	Unit	i i cilial KS			
Power supply voltage	Vcc	2.7	3.6	V	At normal operating			
Fower supply voltage	VCC	1.8	3.6	V	Stop operation state maintenance			
	Vін	0.7 Vcc	Vcc + 0.3	V	CMOS input pin			
"H" level input voltage	ViHs	0.8 Vcc	Vcc + 0.3	V	CMOS hysteresis input pin (Resisting pressure of 5 V is $V_{CC} = 5.0$ V)			
	Vінм	Vcc - 0.3	Vcc + 0.3	V	MD pin input			
	VIL	Vss - 0.3	0.3 Vcc	V	CMOS input pin			
"L" level input voltage	Vils	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin			
	VILM	Vss - 0.3	Vss + 0.3	V	MD pin input			
Operating temperature	TA	- 40	+ 85	°C				

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

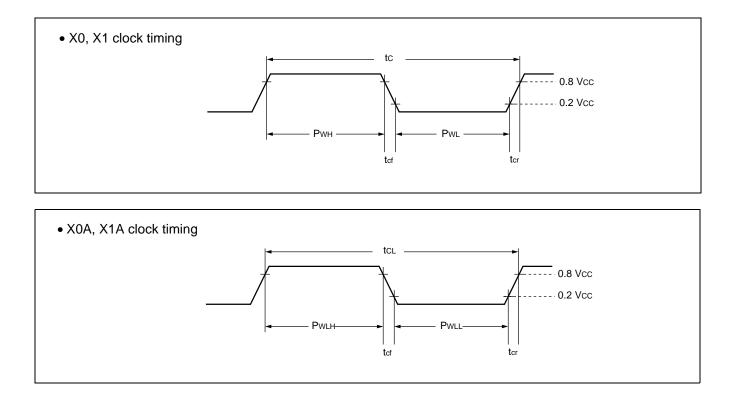
3. DC Characteristics

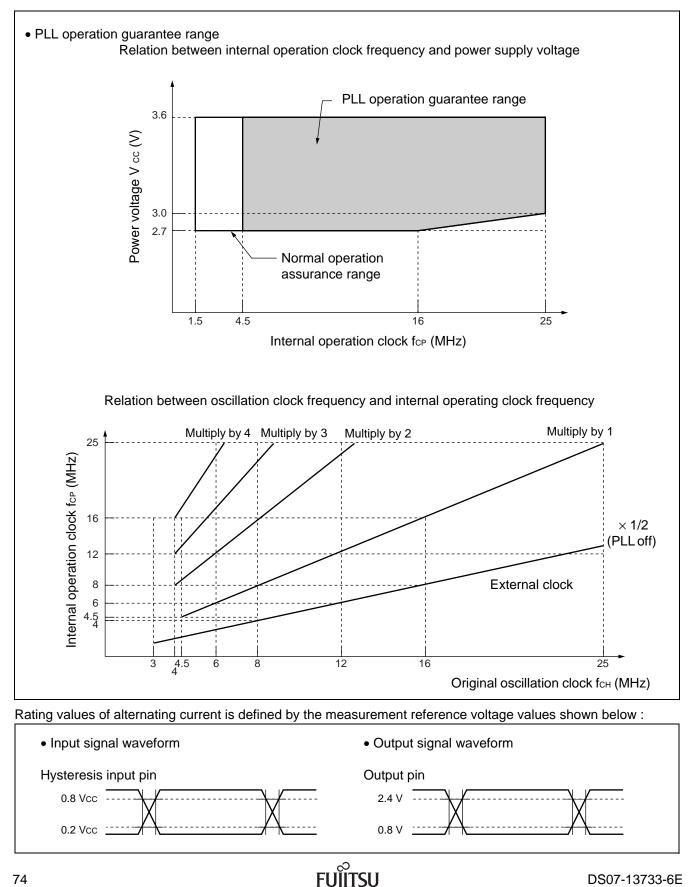
Deversator	Sym-	Pin name	Conditions		Value	11	Demontor	
Parameter	bol		Conditions	Min	Тур	Max	Unit	Remarks
"H" level output voltage	Vон	Output pins other than P40 to P47, P74, P75	Іон = - 4.0 mA	Vcc - 0.5		Vcc	V	
	Vон1	P40 to P47	Іон = - 8.0 mA	Vcc-0.5	_	Vcc	V	Heavy-current output port
"L" level output voltage	Vol	Output pins other than P40 to P47, P74, P75	lo∟ = 4.0 mA	Vss		Vss + 0.4	V	
	Vol1	P40 to P47	lo∟ = 15.0 mA	Vss	_	Vss + 0.6	V	Heavy-current output port
	Vol2	P74, P75	lo∟ = 15.0 mA		0.5	Vss + 0.8	V	Open-drain pin
Open-drain output application voltage	V _{D1}	P74, P75		Vss - 0.3	_	Vss + 5.5	V	
Input leak current	lı∟	All output pins	Vcc = 3.3 V, Vss < Vi < Vcc	- 10	_	+ 10	μA	
Pull-up resistor	Rup	RST	Vcc = 3.3 V, T _A = + 25 °C	25	50	100	kΩ	
Pull-down resistor	Rdown	MD2	$\label{eq:Vcc} \begin{array}{l} Vcc = 3.3 \ V, \\ T_A = + \ 25 \ ^\circ C \end{array}$	25	50	100	kΩ	Except Flash memory products
Open drain output current	lleak	P74, P75			0.1	10	μA	
Power supply current			Vcc = 3.3 V, Internal fre- quency 25 MHz At normal oper- ating		48	60	mA	
	Icc	Vcc	Vcc = 3.3 V, Internal fre- quency 25 MHz At Flash writing		60	75	mA	Flash memory products
			Vcc = 3.3 V, Internal fre- quency 25 MHz At Flash erasing	_	60	75	mA	Flash memory products
	lccs		Vcc = 3.3 V, Internal fre- quency 25 MHz at sleep mode		22.5	30	mA	

(Continued)

(Continued)

 $(V_{CC} = AV_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 85 \text{ }^{\circ}\text{C})$

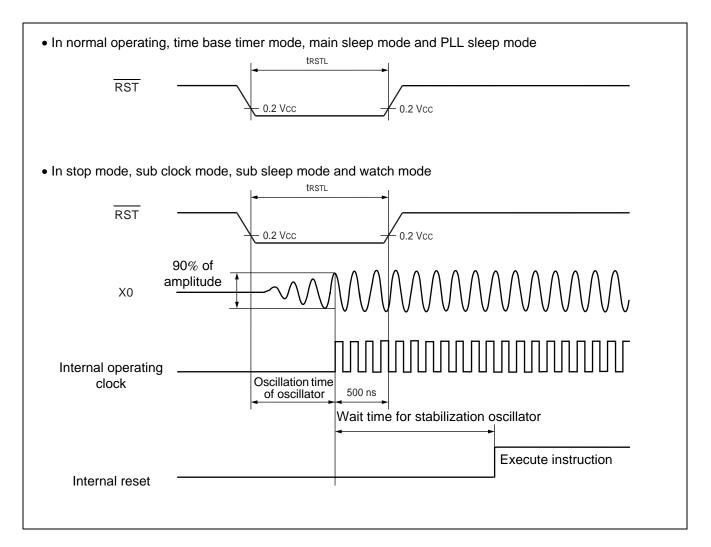

	Sym-	Pin name	$(\text{Vcc} = \text{AVcc} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ V}$		Value	••••		
Parameter	bol		Conditions	Min	Тур	Max	Unit	Remarks
Power supply current	Ісстѕ		Vcc = 3.3 V, Internal frequency 3 MHz at timer mode		0.75	7	mA	
	lcc∟		$V_{CC} = 3.3 \text{ V},$ Internal frequency 8 kHz at subclock operation, $(T_A = +25 \text{ °C})$	_	15	140	μA	MASK ROM products
					0.5	0.9	mA	Flash memory products
	Iccls	Vcc	$\label{eq:Vcc} \begin{array}{l} V_{\text{Cc}} = 3.3 \text{ V},\\ \text{Internal frequency 8 kHz}\\ \text{at subclock sleep operation,}\\ (T_{\text{A}} = + 25 \ ^{\circ}\text{C}) \end{array}$		13	40	μΑ	
	Ісст		$V_{CC} = 3.3 V,$ Internal frequency 8 kHz at watch mode $(T_A = +25 \text{ °C})$	_	1.8	40	μΑ	
	Іссн		At Stop mode, (T _A = + 25 °C)	_	0.8	40	μA	
		Vcc – V3	At LCR = 0 setting	100	200	400		
	RLCD	Vcc – V3	At LCR = 1 setting	12.5	25	50		
LCD division resistance		V0 – V1, V1 – V2, V2 – V3	At LCR = 0 setting	50	100	200	kΩ	*
		V0 – V1, V1 – V2, V2 – V3	At LCR = 1 setting	6.25	12.5	25		
COM0 to COM3 output impedance	R∨сом	COM0 to COM3	V1 to V3 = 3.3 V			2.5	kΩ	
SEG0 to SEG47 output impedance	Rvseg	SEG0 to SEG47				15	kΩ	
LCD leak current	ILCDC	V0 to V3, COM0 to COM3, SEG0 to SEG47		- 5		+ 5	μΑ	


* : LCD internal divided resistor can be select two type resistor by internal divided resistor selecting bit (LCR) of LCDC range register (LCRR) .

4. AC Characteristics

(1) Clock timin

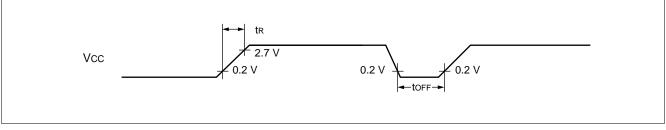
(1) Clock timing		(Vcc	= AVcc =	= 3.3 V ±	0.3 V, Vs	s = AVss	= 0.0 \	/, T _A = − 40 °C to + 85 °C)
Parameter	Sym	Pin name	Condi-		Value		Unit	Remarks
Faialletei	bol	Fill lidille	tions	Min	Тур	Max	Unit	Remarks
				3		16		External crystal oscillation
		X0, X1		3		16		\times 1/2 (at PLL stop) At oscillation circuit
				4		16		Multiply by 1 At oscillation circuit
Clock frequency		Λ0, Λ1		4		12.5		Multiply by 2 At oscillation circuit
		X0		4		8.33		Multiply by 3 At oscillation circuit
	fсн			4		6.25	MHz	Multiply by 4 At oscillation circuit
				3		25		\times 1/2 (at PLL stop) At external clock
				4		25	-	Multiply by 1 At external clock
				4		12.5		Multiply by 2 At external clock
				4		8.33		Multiply by 3 At external clock
				4		6.25		Multiply by 4 At external clock
	fc∟	X0A, X1A			32.768		kHz	
Clock cycle time	t HCYL	X0, X1		40	—	333	ns	
	t LCYL	X0A, X1A			30.5		μs	
Input clock pulse width	Р _{WH} Рw∟	X0		5			ns	Set duty ratio $50\% \pm 3\%$
	Pwlh Pwll	X0A			15.2		μs	Set duty ratio at 30% to 70% as a guideline.
Input clock rise time and fall time	tcr tcf	X0				5	ns	At external clock
Internal operating clock	fср			1.5		25	MHz	When main clock is used
frequency	fcP1				8.192		kHz	When sub clock is used
Internal operating clock	t CP			40		666	ns	When main clock is used
ycle time	t _{CP1}	—			122.1		μs	When sub clock is used



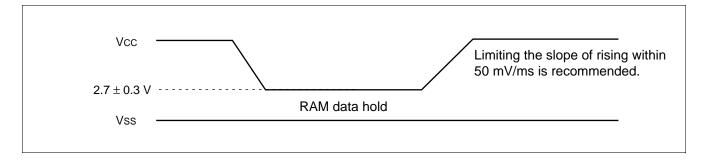
(2) Reset input timing

., .	U		(Vcc = A)	$V_{\rm CC} = 3.3 \ V \pm 0.3 \ V$	', Vss =	AVss	= 0.0 V, T _A $= -40$ °C to $+85$ °C)	
Parameter	Sym-	Pin name	Condi-	Value		Unit	Remarks	
Farameter	bol	Fininanie	tions	Min	Max	Unit	Rellidiks	
Posot input time	toor	RST		500		ns	At normal operating, at time base timer mode, at main sleep mode, at PLL sleep mode	
Reset input time	t rstl			Oscillation time of oscillator*+ 500 ns		μs	At stop mode, at sub clock mode, at sub sleep mode, at watch mode	

* : Oscillation time of oscillator is time until oscillation reaches 90% of amplitude. It takes several milliseconds to several dozens of milliseconds on a crystal oscillator, several hundreds of microseconds to several milliseconds on a ceramic oscillator, and 0 milliseconds on an external clock.



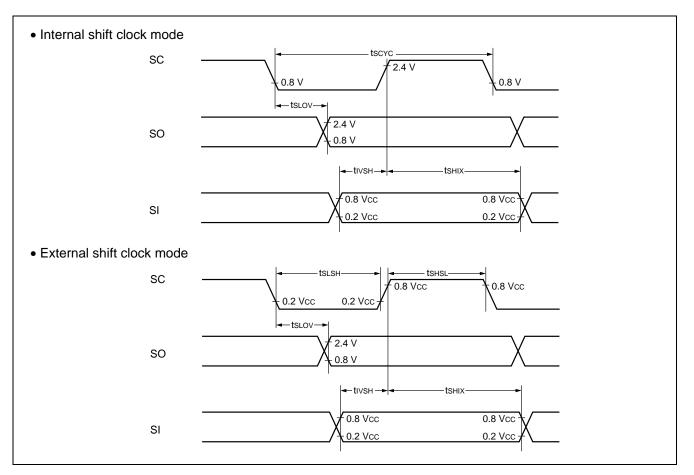
(3) Power-on reset


		(Vcc = /	AVcc = 3.3 V	′±0.3 V, \	/ss = AVss	= 0.0 V,	$T_A = -40 \ ^{\circ}C \ to + 85 \ ^{\circ}C)$	
Parameter	Symbol	Din nome	name Condi- tions	Value		Unit	Remarks	
Falameter	Symbol	FIII Haille		Min	Max	Unit	Remarks	
Power supply rising time	tR	Vcc			30	ms	At normal operating	
Power supply shutdown time	toff	Vcc	—	1		ms	Wait time until power on	

Notes : • Vcc should be set under 0.2 V before power-on rising up.

- These value are for power-on reset.
- In the device, there are internal registers which is initialized only by a power-on reset. If these initialization is executing, power-on procedure must be obeyed by these value.

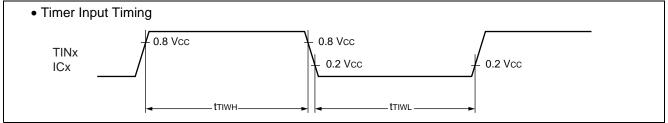
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, raise the power smoothly by suppressing variation of voltages as shown below.


(4) Serial I/O

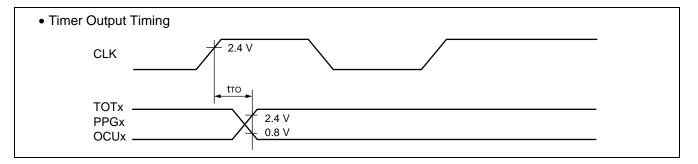
()	(Vcc = AVcc = 3.3	$1/\pm 0.3$ V, Vss = AVss = 0	.0 V, T _A = -	- 40 °C to +	85 °C)
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit
Falameter	Symbol	Fill hame	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SC0 to SC3		8 t cp		ns
SCK $\downarrow \rightarrow$ SOT delay time	t slov	SC0 to SC3, SO0 to SO3	Internal shift clock	-80	+ 80	ns
Valid SIN \rightarrow SCK \uparrow	tıvsн	SC0 to SC3,	mode output pin : C∟ = 80 pF + 1TTL	100	—	ns
$SCK \uparrow \rightarrow Valid$ SIN hold time	tsнıx	SI0 to SI3		60		ns
Serial clock "H" pulse width	t shsl	SC0 to SC3		4 t cp	—	ns
Serial clock "L" pulse width	ts∟sн	30010303		4 tcp		ns
SCK $\downarrow \rightarrow$ SOT delay time	t slov	SC0 to SC3, SO0 to SO3	External shift clock mode output pin :	_	150	ns
Valid SIN \rightarrow SCK \uparrow	tıvsн	SC0 to SC3,	C∟ = 80 pF + 1TTL	60		ns
$SCK \uparrow \rightarrow valid$ SIN hold time	tsнıx	SI0 to SI3		60		ns

Notes : • The above rating is in CLK synchronous mode.

• C L is a load capacitance value on pins for testing.


• tcp is machine cycle frequency (ns) . Refer to " (1) Clock timing".

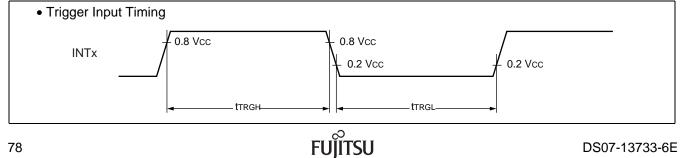
(5) Timer input timing


		(Vcc = AVcc = 3.3)	$V \pm 0.3 V$, $Vss = AV$	/ss = 0.0 V, TA	= $-40 \ ^{\circ}C$ to +	- 85 °C)
Parameter	Symbol	Pin name	Conditions	Va	lue	Unit
Farameter	Symbol		Conditions	Min	Max	Unit
Input pulse width	tтıwн tтıw∟	TIN0 to TIN2, IC0, IC1		4 tcp		ns

Note : tcp is machine cycle frequency (ns) . Refer to " (1) Clock timing".

(6) Timer output timing

		$(Vcc = AVcc = 3.3 V \pm$	0.3 V, Vss = A	Vss = 0.0 V, TA	$x = -40 ^{\circ}\text{C}$ to +	85 °C)
Parameter	Symbol	Pin name	Conditions	Va	Unit	
	Symbol	Fininanie	Conditions	Min	Max	Unit
$CLK \uparrow \to T_{OUT}$ change time	tто	TOT0 to TOT2, PPG0, PPG1, OCU0, OCU1		30		ns



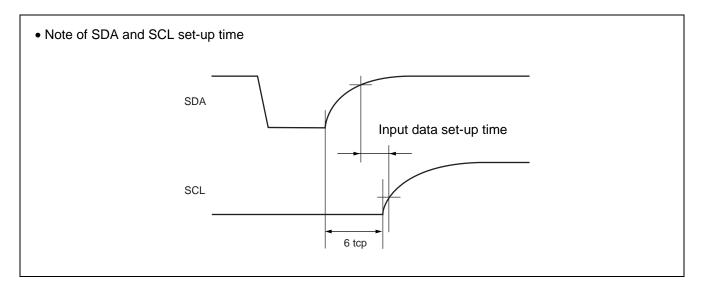
(7) Trigger input timing

 $(V_{CC} = AV_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}, \text{ Vss} = AV_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to} + 85 \text{ }^{\circ}\text{C})$

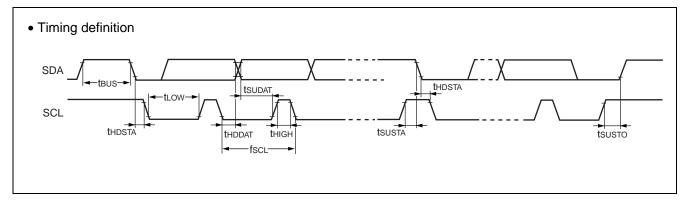
Parameter	Symbol	Pin name	Condi-	Va	ue	Unit	Remarks					
Falameter	Symbol	Fininame	tions	Min	Max	Unit	ixellidi K5					
Input pulse width	t trgh	^{3H} INTO to INT3	INTO to INT3	INT0 to INT3	INTO to INT3	INT0 to INT3	INTO to INT3		5 tcp		ns	At normal operating
	t trgl			1		μs	In Stop mode					

Note : tcp is machine cycle frequency (ns) . Refer to " (1) Clock timing".

(8) I²C timing


		= $3.3 \text{ V} \pm 0.3 \text{ V}$, V_{SS} = AV_{SS} = 0.0 V , T_{A} = $\frac{1}{2}$	Stan	dard-	
Parameter	Symbol	Conditions	mo		Unit
			Min	Max	
SCL clock frequency	fsc∟		0	100	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	t hdsta	When power supply voltage of external	4.0		μs
"L" width of the SCL clock	tLOW	pull-up resistor is 5.0 V R = 1.0 k Ω , C = 50 pF ^{*2}	4.7		μs
"H" width of the SCL clock	tнigн	When power supply voltage of external	4.0		μs
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	pull-up resistor is 3.6 V R = 1.0 k Ω , C = 50 pF ^{*2}			μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t hddat		0	3.45 *3	μs
Data set-up time		$ \begin{array}{l} \mbox{When power supply voltage of external} \\ \mbox{pull-up resistor is 5.0 V} \\ f_{CP}{}^{*1} \leq 20 \mbox{ MHz}, \mbox{ R} = 1.0 \Omega, \mbox{ C} = 50 \mbox{F}^{*2} \\ \mbox{When power supply voltage of external} \\ \mbox{pull-up resistor is 3.6 V} \\ f_{CP}{}^{*1} \leq 20 \mbox{ MHz}, \mbox{ R} = 1.0 \Omega, \mbox{ C} = 50 \mbox{F}^{*2} \\ \end{array} $	250 *4		ns
$SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t sudat	$ \begin{array}{l} \mbox{When power supply voltage of external} \\ \mbox{pull-up resistor is 5.0 V} \\ f_{CP}{}^{*1} > 20 \mbox{ MHz}, \mbox{ R} = 1.0 \mb$	200 *4		ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	t susto	When power supply voltage of external pull-up resistor is 5.0 V	4.0	_	μs
Bus free time between a STOP and START condition	t B∪S	$\label{eq:rescaled} \begin{array}{l} R = 1.0 \ k\Omega, \ C = 50 \ pF^{*2} \\ \text{When power supply voltage of external} \\ \text{pull-up resistor is } 3.6 \ V \\ R = 1.0 \ k\Omega, \ C = 50 \ pF^{*2} \end{array}$	4.7		μs

*1 : fcP is internal operation clock frequency. Refer to " (1) Clock timing".


*2 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*3 : The maximum thodat only has to be met if the device does not stretch the "L" width (tLow) of the SCL signal.

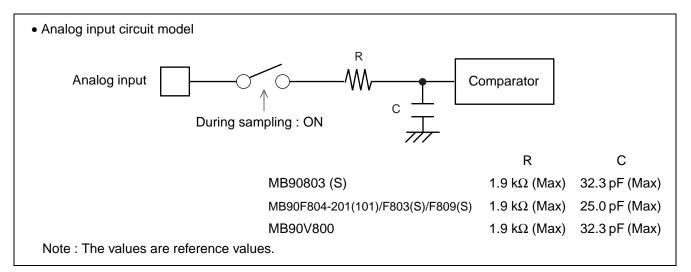
*4 : Refer to "• Note of SDA and SCL set-up time".

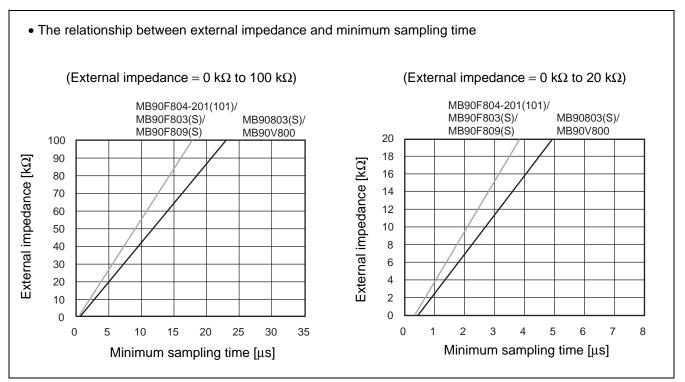
Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor. Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

5. A/D Converter

(1) A/D Converter Electrical Characteristics

Demonster	Sym-	Pin	Condi-		Value		11	Dementer
Parameter	bol	name	tions	Min	Тур	Max	Unit	Remarks
Resolution		_				10	bit	
Total error						± 3.0	LSB	
Nonlinear error						± 2.5	LSB	
Differential linear error						± 1.9	LSB	
Zero transition voltage	Vot	AN0 to AN11		AVss – 1.5LSB	AVss + 0.5LSB	AVss + 2.5LSB	V	1 LSB = (AVcc - AVss)/
Full-scale transition voltage	Vfst	AN0 to AN11		AVcc – 3.5LSB	AVcc – 1.5LSB	AVcc + 0.5LSB	V (AVCC - AVS 1024	
Conversion time				8.64*1			μs	
Sampling time				2			μs	
Analog port input current	Iain	AN0 to AN11				10	μΑ	
Analog input voltage	Vain	AN0 to AN11		0		AVcc	V	
Reference voltage		AVcc		3.0		AVcc	V	
Power supply	IA	AVcc			1.4	3.5	mA	
current	Іан	AVcc				5* ²	μΑ	
Reference	Ir	AVcc]		94	150	μΑ	
voltage supplying current	IRH	AVcc				5* ²	μΑ	
Interchannel disparity		AN0 to AN11				4	LSB	


*1 : At operating, main clock 25 MHz.


*2 : If A/D converter is not operating, a current when CPU is stopped is applicable (at Vcc - CPU = AVcc = 3.3 V)

(2) Notes on Using A/D Converter

• About the external impedance of analog input and its sampling time

A/D converter with sample & hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relation-ship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. And, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μF to the analog input pin.

About errors

As | AVcc – AVss | becomes smaller, values of relative errors grow larger.

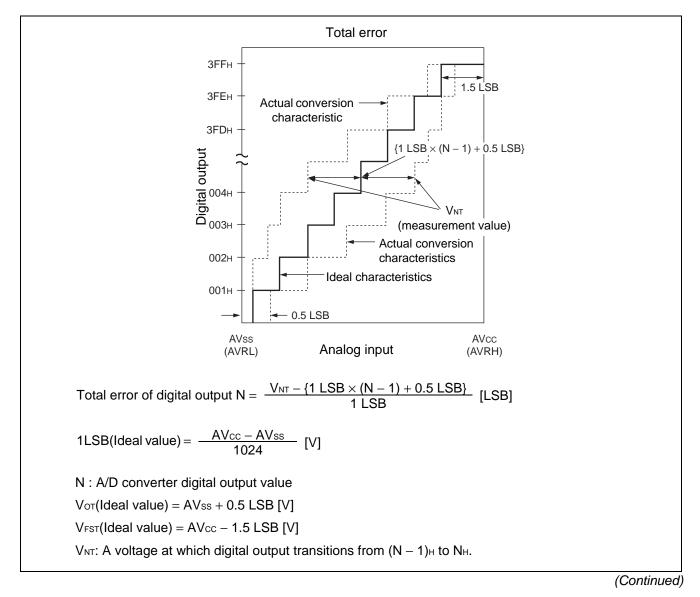
6. Definition of A/D Converter Terms

Resolution

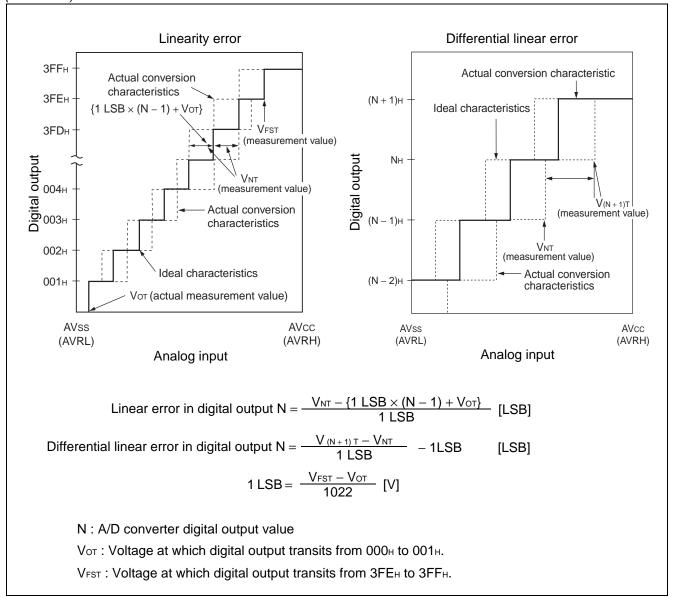
Analog variation that is recognized by an A/D converter.

The 10-bit can resolve analog voltage into $2^{10} = 1024$.

Total error


This shows the difference between the actual voltage and the ideal value and means a total of error because of offset error, gain error, non-linearity error and noise.

Linearity error


Deviation between a line across zero-transition line (00 0000 0000 \leftrightarrow 00 0000 0001) and full-scale transition line (11 1111 1110 \leftrightarrow 11 1111 1111) and actual conversion characteristics.

Differential linear error

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

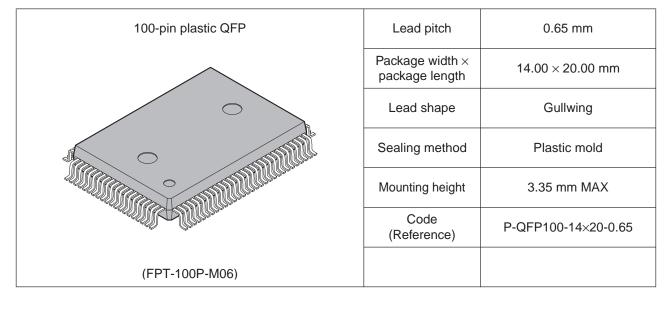
(Continued)

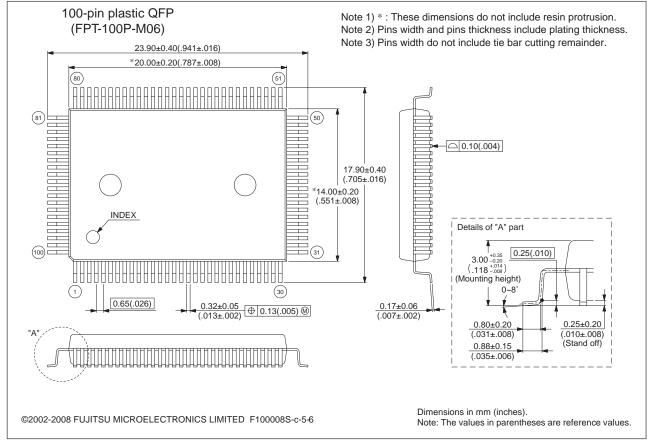
Deremeter	Conditions		Value		Unit	Demerke	
Parameter	Conditions	Min	Тур	Max	Unit	Remarks	
Sector erase time		_	1	15	6	Excludes 00+ programming	
Chip erase time	T _A = + 25 °C	_	9		S	prior to erasure.	
Word (16-bit width) programming time	Vcc = 3.0 V		16	3600	μs	Except for the over head time of the system.	
Program/erase cycle		10000		_	cycle		
Flash memory data retention time	Average T _A = + 85 °C	20			year	*	

7. Flash Memory (MB90F804-101/201, MB90F809/S)

* : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

8. Dual Operation Flash Memory (MB90F803/S)

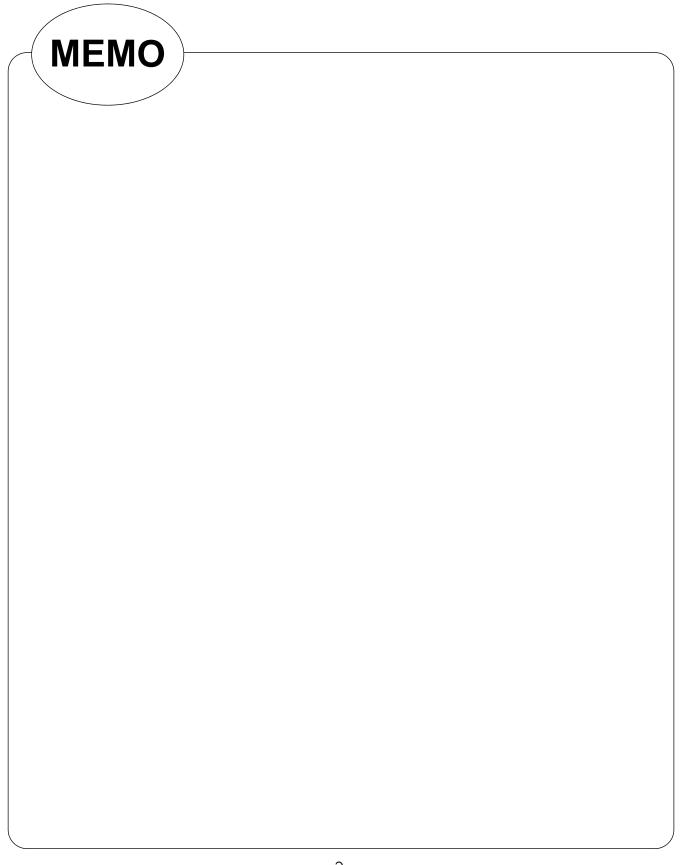

Parameter	Conditions		Value		Unit	Remarks
Farameter	Conditions	Min	Тур	Max	Unit	Rellidiks
Sector erase time (4 Kbytes sector)			0.2	0.5		
Sector erase time (16 Kbytes sector)	T _A = +25 °C Vcc = 3.0 V		0.5	7.5	S	Excludes 00⊦ programming prior to erasure.
Chip erase time	vcc = 3.0 v		4.6			
Word (16-bit width) programming time		_	64	3600	μs	Except for the over head time of the system.
Program/erase cycle	—	10000			cycle	
Flash memory data retention time	Average T _A = + 85 °C	20			year	*

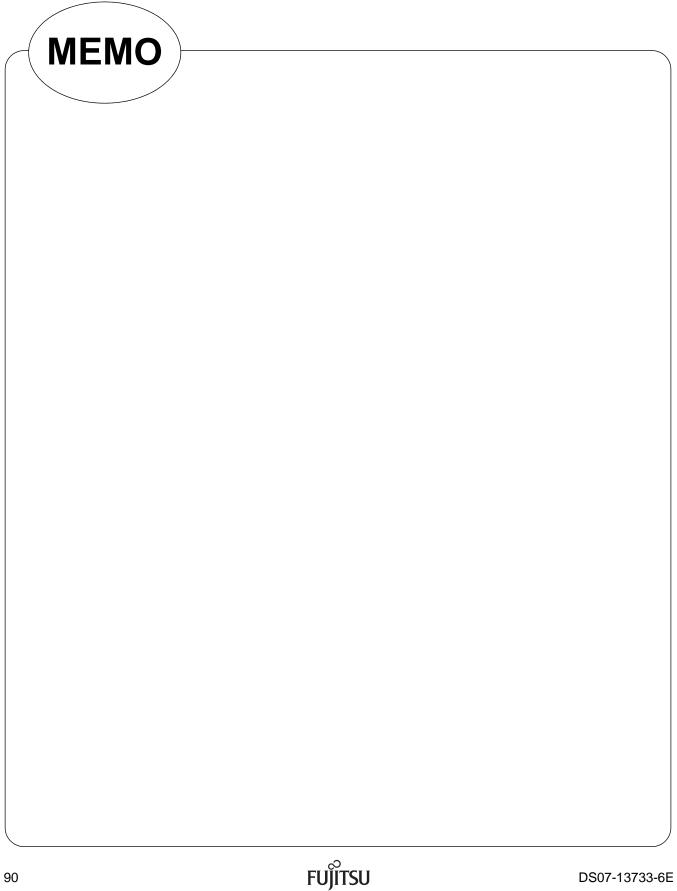

* : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85 °C).

■ ORDERING INFORMATION

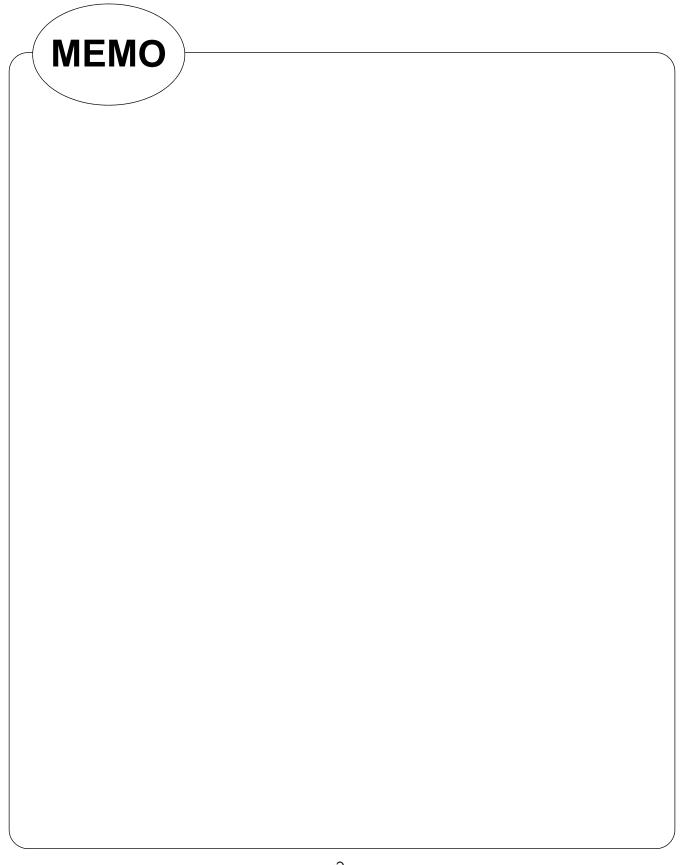
Part number	Package	Remarks
MB90F804-101PF-G MB90F804-201PF-G MB90F803PF-G MB90F803SPF-G MB90F809PF-G MB90F809SPF-G	100-pin plastic QFP (FPT-100P-M06)	With sub clock: Products without "S" suffix 201 option products Without sub clock: Products with "S" suffix
MB90803PF-G MB90803SPF-G		101 option products

PACKAGE DIMENSION


Please check the latest Package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/


■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
17		Corrected "Address #2" for part number MB90F809/S. FC8000 $H \rightarrow$ FD0000H


The vertical lines marked in the left side of the page show the changes.

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3329 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.